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Abstract

The Smart Grid is aiming at improving today’s power grid to work more efficient
and more reliable. It should enable the grid to work in an optimal and safe way
even with an expected increased integration of a high number of distributed
renewable energies generation units. One key factor to achieve these goals is to
introduce smart metering providing fine-grained measurements letting us know
when and where how much energy was consumed.

The availability of fine-grained consumption information helps to improve energy
awareness of inhabitants which leads to a more efficient use of energy resources.
In general, the more detailed the information of energy consumption the higher
are the expected savings. Thus, feedback on the energy consumption of particular
devices is beneficial to increase energy savings. One possible approach to assess
consumption information on device-level is to add a measurement unit to
each appliance. This introduces additional costs and increases also the energy
consumption due to the additional metering units. In this context, Non-intrusive
Load Monitoring (NILM) tries to break down the household consumption data
to its appliance components at the grid connection point with minimum costs.
The basic idea of NILM is to use statistical information of the appliance usage
and to apply this knowledge for detecting running appliances in the overall
power consumption.

This thesis deals with three different applications for non-intrusive load moni-
toring. First, a simple optimization based approach is proposed to solve the
problem of aggregated power loads. Six different metaheuristic optimization
techniques are used and tested on real-world data. The evaluation showed
that the procedure is possible for simple setups, but cannot deal with device
configurations that are typical for households.

Furthermore, to assess the complexity of NILM, the thesis is dealing with
two complexity measures for classifying the load disaggregation problem. This
application was inspired by the fact that there is no general common problem
definition for NILM. Different NILM evaluations are using real-world datasets
with different pre-processing stages and system assumptions. A fair comparison
between different NILM problems is only possible with a complexity measure
describing the NILM problem. The evaluations on three different real-world
datasets showed that the proposed complexity measures are suitable to classify
load disaggregation problems according to their complexity.

Finally, the thesis introduces a new unsupervised NILM approach. This approach
is working without system information and is improving its system knowledge
over time. It is working online and is suitable to run on embedded hardware.
The applicability and the usefulness for NILM applications has been evaluated
with synthetic and real-world data.
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Zusammenfassung

Das Smart Grid hat das Ziel das heutige Stromnetz zu verbessern um effizienter
und zuverlässiger zu arbeiten. Es soll dem Stromnetz ermöglichen in einem
optimalen und sicheren Zustand zu funktionieren, obwohl eine steigende Inte-
gration von verteilten erneuerbaren Energieerzeugungseinheiten zu erwarten ist.
Ein Schlüsselfaktor, um dieses Ziel zu erreichen, ist die Einführung von Smart
Metering, welches feinkörnige Messungen bietet, um zu wissen, wann und wo,
wieviel Energie verbraucht wurde.

Die Verfügbarkeit der feinkörnigen Verbrauchsinformationen hilft dabei das
Energiebewusstsein der Einwohner zu verbessern, was zu einer effizienteren
Nutzung von Energieressourcen führt. Im Allgemeinen sind die zu erwartenden
Einsparungen um so höher je detaillierter die Informationen über den Energie-
verbrauch sind. Ein möglicher Ansatz Verbrauchsinformationen auf Geräteebene
zu beurteilen, ist es zu jedem Gerät eine Messeinheit hinzuzufügen. Dies führt
zu zusätzlichen Kosten und erhöht auch den Energieverbrauch aufgrund der
zusätzlichen Messeinheiten. Non-intrusive load monitoring (NILM) versucht in
diesem Zusammenhang den Hausverhaltsverbrauch auf die Gerätekomponenten
mittels eines zentralen Messansatzes mit minimalen Kosten der Messeinhei-
ten herunterzubrechen. Die grundsätzliche Idee von NILM ist es statistische
Informationen des Geräteverbrauches zu nutzen und dieses Wissen zu einem
Klassifizierungsmechanismus zu führen, um laufende Geräte zu erkennen.

Diese Doktorarbeit befasst sich mit drei verschiedenen Anwendungen für Non-
intrusive Load Monitoring. Zunächst wird ein einfacher Optimierungsansatz
vorgeschlagen, um das Problem von aggregrieten Stromverbrauchern zu lösen.
Sechs verschiedene metaheuristische Optimierungsverfahren werden dafür ver-
wendet und mit realen Daten getestet. Die Auswertung ergab, dass das Verfahren
für einfache Konfigurationen möglich ist, aber nicht mit Gerätekonfigurationen,
die typisch für einen Haushalt sind, umgehen kann.

Um die Komplexität zu beurteilen, befasst sich diese Arbeit mit zwei Komple-
xitätsmaßen zur Klassifizierung des NILM-Problems. Diese Anwendung wurde
durch die Tatsache inspiriert, dass es keine generell übliche Problemdefinition
für NILM gibt. Verschiedenste NILM-Ansätze verwenden reale Datensätze mit
verschiedenen Vorbearbeitungsstufen und Systemannahmen. Ein fairer Vergleich
zwischen verschiedenen NILM-Algorithmen ist daher ohne ein Komplexitätsmaß
zur Beschreibung eines NILM-Problems nicht möglich. Die Evaluierung mit-
tels drei verschiedenen Verbrauchsdatensätzen zeigte, dass die vorgeschlagenen
Komplexitätsmaße dazu geeignet sind, das NILM-Problem entsprechend ihrer
Komplexität zu klassifizieren.

Schlussendlich, führt diese Arbeit auch noch einen neuen unbeobachteten (un-
supervised) NILM-Ansatz ein. Dieser Ansatz funktioniert ohne Systeminforma-
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tionen und verbessert ständig die Systeminformationen. Er arbeitet online und
ist fähig auf Embedded-Hardware zu laufen. Der Ansatz wurde mit künstlichen
und realen Szenarien auf seine Anwendbarkeit und Nützlichkeit für NILM-
Anwendungen hin überprüft.
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CHAPTER

1
Introduction

”Verba volant, scripta manent”

– Caius Titus

The future Smart Grid aims to change and to improve the current power grid
into a more efficient and reliable power grid. Enhancement in the grid should
enable an easy and smooth integration of renewable energies. By knowing
energy demand and production, the Smart Grid will be able to operate the
grid in an optimal way as well as within safe conditions. The European Union
introduces for this their 20/20/20 goals [Böh09] to improve the current grid.
The goals are to reduce the green house gas emissions by 20%, to increase the
number of renewable energy sources by 20% and to be more energy efficient by
20% by 2020.
Considering the goal to be more energy efficient, one key aspect is to know
how energy is consumed. This could be achieved by knowing how much energy
was consumed at which point in time. One solution for this is the initiative to
introduce smart metering to retrieve information from energy measurements in
a timely manner. Smart metering solutions provide fine-grained energy feedback
for data analysis techniques to show how energy is used over time and accordingly,
to improve energy awareness. One key application for smart meters are domestic
environments who accounts for a major part of the world wide electricity
consumption [EST12]. Thus, it is an important goal for current and future energy
research to improve the energy awareness of inhabitants to decrease home energy
consumption. In [For09], Ford suggested to increase energy efficiency of domestic
environments by behavioral changes of inhabitants. Changing consumer behavior
can be achieved by providing energy feedback. In general, energy feedback
can be divided into indirect and direct feedback. Indirect feedback represents
feedback given some time after the consumption. Examples for this are energy
billings for each day or week in contrast to today’s per year energy billing.
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1 Introduction

Figure 1.1: Energy savings due to consumption feedback [Arm13]

Direct consumption feedback means to provide consumption information in
real-time. A solution is an in-home display showing the current consumption of
a home. Different feedback techniques [Dar06, Fis08, Nee09, Far10] and their
corresponding energy savings are presented in Figure 1.1. The best saving results
have been achieved by using direct feedback on appliance level [Uen06, EM10].
In [Nee09, EM10] consumption reductions of 9−18% are stated based on tailored
appliance level feedback.

There exist different possibilities to achieve appliance-level consumption
feedback. One is to add a monitoring device to each appliance in a home tracking
the electricity consumption of devices. High investment and maintenance costs
are expected to be decreased in future years, but today the costs make this
approach impractical and uneconomical. Additionally, the monitoring solution
itself is consuming energy, thus the reduction initiated by the feedback has to be
greater than the additional consumption. Another possibility for appliance-level
energy feedback is the use of smart appliances [Elm12]. Smart appliances know
their current operation state and consumption data and are able to communicate
this information. Unfortunately, the development and standardization (e.g.,
interface description) of smart appliances are still in its early stages and not to
be expected within the next few years.

2



1 Introduction

The last possibility is to use a single meter approach named Non-intrusive
Load Monitoring (NILM) performing load disaggregation. A single meter
measures the total household consumption with a measurement frequency in
the range of every hour to far below one second (up to 1MHz). By having a
measurement point each minute or lower, characteristic appliance behaviors can
be detected. Different appliances and appliance types are consuming energy
in different ways making it possible to generate appliance specific patterns,
models and characteristics. An example for an appliance characteristic is the
amount of consumed power in operation. Accordingly, a stove has a different
energy demand than a mobile phone charger. Moreover, the way an appliance
is used also contributes to possible appliance characteristics. A fridge, for
example, is frequently cooling over the day to control the temperature in the
fridge and a water kettle is only used on demand. NILM algorithms uses these
appliance characteristics to infer which appliance was used at which point in
time (see Figure 1.2). However, in typical environments different appliances

P 

t 

P

t 
P

t 
P

t 

P 

t 

Appliances Appliance specific demand Aggregated power demand 

Figure 1.2: Basic principle of the NILM process

are used at the same time. The aggregation of appliance consumption data
creates combined power values which have to be considered and disaggregated
by a NILM approach. Additionally, various appliances can have also similar
consumption behaviors. It is imaginable that the energy demand of a water
kettle and a toaster can be in a similar range. As a consequence, the NILM
problem is complex due to the fact of aggregated appliance consumption data
and the similarities between appliance characteristics.
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1 Introduction

Figure 1.3: Time series example from the original work of Hart [Har92]

An example of a power draw of a household power consumption is presented
in Figure 1.3. The figure shows different appliances with different starting and
usage times in which the operations of appliances and accordingly their power
draws are overlapping.

In recent years, many different disaggregation approaches were proposed
opening a variety of different applications for energy feedback [Arm13], for
activity recognition used in ambient assisted living [Bel13] and for load manage-
ment systems [Bar14b]. Besides these positive applications to improve energy
awareness and energy efficiency, NILM also opens privacy threatening issues.
With 1s measurement granularity, NILM approaches can disaggregate around
10 different appliances [Arm13]. With information of the power demand habits
on appliance level, it is possible to extract user behaviors and habits by ac-
tivity recognition and user profiling [Ngu13, Lis10]. An extreme example for
analysing the energy data on appliance level is shown in [Gre12]. They used
a smart meter and smart algorithms to identify the multimedia content of a
TV. Potentially interested stakeholders are presented in [Sko12] such as the
energy utility, creditors, press and marketing/advertisements partners, and, in
an extreme case, even criminals. The loss of privacy by load disaggregation and
energy mining is a huge upcoming issue for society and the smart grid which
calls for privacy preserving techniques such as anonymization of metering data
[Eft10], privacy-preserving metering data aggregation [Li11] and masking and
obfuscation of metering data [Yan12].

Considering all these aspects, NILM is a complex problem [Har92]. Al-
gorithms are developed for certain applications. Thus, this thesis proposes
approaches providing basic and novel solutions for the load disaggregation
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problem. In the following, we describe which applications and problems for
NILM we are investigating and which research questions are solved by this
thesis.

1.1 Problem Statement

In recent years, load disaggregation has become a popular research topic. In
Figure 1.4 the number of publications over recent years is shown1. Many

Figure 1.4: NILM related publications over the recent years

scientific approaches and communities contribute their work and knowledge to
the topic. It has to be clearly defined which problem should be solved and which
application should be stressed. Due to the roll-out of smart meters in past (e.g.,
in Italy) and current/upcoming years (e.g., Austria) and their characteristics to
provide consumption feedback, we decided to approach applications based on
active power measurements working in homes due to its availability through
smart metering. In general, smart meters provide active power measurements
used for billing and its general unit is Watt. In detail, we are concentrating
on active power measurements with a frequency of 1 second. A frequency of 1
second means to have a measurement data point each second. We defined three
different key interests, which are stressed in different chapters of this thesis:

1. The load disaggregation problem and its original definition: this chapter
should answer the question whether it is possible and meaningful to model

1Presented by Oliver Parson in his blog
http://blog.oliverparson.co.uk/2015/03/overview-of-nilm-field.html
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the load disaggregation problem as a stateless optimization approach
(e.g., knapsack problem) and solve it with state-of-the-art optimization
techniques.

2. Description of the problem complexity: this work aims to describe the
load disaggregation problem by a complexity measure to make load disag-
gregation problems with different setups comparable.

3. Introducing a novel load disaggregation approach: the proposed load
disaggregation approach should have the following novel combinations of
characteristics such as i) the approach should be one-feature based, ii)
the approach uses unsupervised classification, iii) the approach includes
autonomous learning and continuous improvement of appliance models,
iv) the approach operates online on each sample and works on restricted
hardware.

The three key interests are motivated in each corresponding chapter and
should provide a broad and deep look into the topic on each approach.

1.2 Outline

This thesis starts with Chapter 1 presenting the topic and motivation of this
work.
Chapter 2 provides an overview of state-of-the-art load monitoring techniques.
This include intrusive load monitoring which is a distributed monitoring ap-
proach as well as non-intrusive load monitoring being the main topic of this
thesis. The survey of non-intrusive load monitoring divides the process of
load monitoring in their processing stages and describes the most important
approaches over the last years.
Chapter 3 deals with the question whether the load disaggregation problem
can be modelled as a knapsack problem. The knapsack problem is adapted
to model the load disaggregation problem. Six different state of the art meta-
heuristic optimization approaches are used to solve the problem. The approach
is evaluated on real world data.
Chapter 4 introduces two new complexity measures describing the load disag-
gregation problem. Until now no metric which makes it possible to compare
different load disaggregation problems independent from the used classification
approach did exist. Recent evaluations are done on classification results not
considering the load disaggregation problem with its preprocessing stages and
characteristics. In particular, a short introduction describes the problem in
detail and why other commonly used complexity measures fail to describe the
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1 Introduction 1.2 Outline

load disaggregation problem. The two measures are evaluated and discussed on
three different datasets, which are commonly used by the load disaggregation
community.
Chapter 5 introduces a novel unsupervised load disaggregation approach. The
presented approach provides advantageous characteristics such as online capa-
bility and the ability to run on embedded hardware without the need of any
system or appliance information a priori. The chapter provides information
on how to model appliances and the aggregated power load by Hidden Markov
Model (HMM)s and Factorial Hidden Markov Model (FHMM)s and how the
used classification/estimation process is working in general. The proposed
approach is evaluated on synthetic and/or on real world data dependent on the
respective case study. At the end the approach is discussed and summarized.
Finally, Chapter 6 summarizes the work, shows and discusses the contribution
of the work, points out limitations of the introduced approaches and gives an
outlook on future work.

7



1.2 Outline 1 Introduction

8



CHAPTER

2
Background to Load Mon-
itoring

”Awareness, when managed and directed, becomes attention. By turning into
attention, awareness becomes localized, and attains a focal point. Because of

this feature, attention has the power to direct energy.”

– Ilchi Lee

To improve people’s energy awareness and to open new energy saving and
redirection opportunities a comprehensive energy monitoring solution is needed
The study of Armel [Arm13] showed that energy feedback on appliance level can
improve energy awareness in homes the most in comparison to other feedback
approaches. In general, we distinguish between two different ways to provide
appliance level feedback: i) intrusive load monitoring and ii) non-intrusive load
monitoring. Intrusive load monitoring uses a distributed sensor network to track
the energy consumpion of appliances via sockets/plugs in homes. The advantage
of simple usage is clouded by the expensive cost to purchase, maintain and
communicate the data of the system. Also the power consumption of such
a distributed monitoring solution has to be considered and has its impact to
the total household consumption. To map the appliance type to monitored
appliances, it is necessary to label the appliances. This is done either by
the human or by smart algorithms doing load identification. In general, load
identification tries to identify the appliance connected to the measured socket
or plug by smart algorithms and characteristics of appliances.

To overcome the disadvantage of intrusive load monitoring, George Hart
introduced an approach named Non-intrusive Load Monitoring (NILM). The
approach, also called load disaggregation, uses a single meter trying to detect
which appliance is used at which point in time having which amount of power.
In the following section, we discuss NILM and load identification in detail more
since these two approaches have several correspondences and are highly related
to the presented work in this thesis.
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2.1 Load Identification 2 Background to Load Monitoring

2.1 Load Identification

Load identification is based on a distributed sensor network measuring the
power consumption on appliance- or plug-level as in the case of intrusive load
monitoring. The aim of load identification is to detect connected appliances.
One of the first approaches was presented by Ruzzelli [Ruz10] who used trained
appliance signatures to detect devices. In detail, the system is called RECAP
(RECognition of electrical Appliances and Profiling in real-time) and uses a
trained artificial neural network to classify stored appliance signatures. The
approach was tested on kitchen appliances reaching an accuracy greater than
84%. Another approach was presented by Reinhardt [Rei12]. He tested different
classifiers (as for example naive Bayes, Bayesian networks, random committee
or random forest) and different feature sets to identify the best classifier for load
identification task. Tests were performed on the Tracebase database [Rei12]. The
best results were achieved by random committee with an accuracy of 95%. More
recently, Ridi published in [Rid13] an approach using K-nearest neighbours and
Gaussian mixture models for classification with dynamic features based on the
time derivative and the time second derivative. They used the ACS-F1 database
[Gis13] reaching an accuracy of up to 93.6%. In [Rid14b] and [Rid14c], Ridi also
introduced an approach using hidden Markov models. Tests were done with the
ACS-F1 and the ACS-F2 database [Rid14a]. Using this approach, accuracies up
to 93.9% could be reached. Finally, Barker introduced in [Bar14a] Non-Intrusive
Load Identification (NILI), which automatically identifies appliances connected
to an outlet or plug without any human interaction. The evaluation was done
on 15 common household appliances. The classification was performed by
off-the-shelf classifiers such as naive Bayes, decision tree and support vector
machines reaching accuracies higher than 90%.

2.2 Non-Intrusive Load Monitoring

Overcoming the disadvantage of a distributed monitoring solution, NILM was
introduced as a single monitor approach. In general, NILM stresses the problem
to break down the energy consumption of a home to its appliance components by
a single sensor approach. The total demand is measured at the grid-connection
point. Appliance characteristics and smart algorithms are used to infer which ap-
pliance is running at which point in time. In detail, the problem to disaggregate
appliance readings from the aggregated power draw is composed by overlapping
appliance power draws, where each appliance has a power draw pi(t). The
aggregated power P (t) can be formulated as the sum of each appliance’s power
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consumption:

P (t) =
N

∑
i=1
pi(t). (2.1)

Each appliance with its power draw pi(t) exhibits a unique energy consumption
pattern based on electrical and usage-based characteristics which enables the
load disaggregation approach to detect appliance operations in the aggregated
power draw. According to appliance consumption patterns, it is possible to
assign appliances to the following appliance categories [Har92, Zei11]:

• On/Off Appliances: These appliances have two operation states

• Multi-state Appliances: These are appliances having a finite number of
operation states.

• Continuous consuming appliances: These appliances have a variable con-
sumption behavior due to their operation states.

• Permanent consuming appliances: These appliances constantly consume
the same energy over time.

Each of these appliances types can be found in homes as well as in commercial
buildings (e.g., schools, company buildings). The main differences for the energy
consumption in private and commercial buildings areas are created by the
amount of used appliances, by the amount of different appliance types and by
the way to use the appliances. In general, a NILM approach can be divided into
a general NILM framework [Zoh12] sketeched in Figure 2.1. In the following,

Data Acquisition 

Feature Extraction 

Learning & 
Classification  

Event Labelling 

Steady-State Features 

Transient State Features 

Supervised 

Unsupervised 

Figure 2.1: General framework of a NILM approach

state-of-the-art for each part of the NILM process are presented.
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2.2.1 Feature Extraction and Appliance Modelling

Data acquisition is the fundamental first step in each load disaggregation
approach retrieving the necessary electric data from the aggregated power
consumption. The necessary monitoring units can be classified according to
measurement resolution into low frequency energy meters measuring electric
quantities such as active power, reactive power, apparent power, signal harmon-
ics, etc. and high frequency energy meters capturing transient events or electric
noise generated by appliances [Wan12]. According to the retrieved electric
quantity, feature extraction has to be done as next step in the NILM process
chain.

The task for the feature extraction is to detect appliance specific events
[And12a, Cox06, Jin11, Nor96] which can be categorized into steady state and
transient state features. A comprehensive overview of possible features for load
signatures is provided by Liang in [Lia10].

Steady state features are considering, for example, power events switching
an appliance from on to off or vice versa. Hart uses this information and
recorded active and reactive power events from household appliances to model
their behavior and characteristics by a simple state-machine [Har92]. We
consider events as steady state events for the load disaggregation application
if the sampling frequency is in the range of 1ms to 1h. Many of today’s
smart metering entities deployed in homes fit into this range which makes load
disaggregation approaches treating steady state features highly employable for
future energy saving applications. Dong in [Don13] identifies power signatures
of major residential loads usable for load disaggregation applications. The
proposed approach uses event filtration, clustering of events, determining of
authentic events and associating of different events together to reconstruct
appliance characteristics, respectively. However, another example is the use
of time domain characteristics of current and voltage waveforms as used in
[Suz08]. He monitored the appliance waveforms for current and voltage with
a sampling interval of 25µs. In [Lau03], authors have used Fouries series
analysis for detecting current harmonics with a sampling frequency of 8Hz.
Gupta and Chen in [Gup10] and [Che15] presented the possibility to analyse
the steady state voltage noise generated by appliances equipped with motors
and switch mode power supplies (SMPS). In the case of Gupta and Chen
noise from −100dBm to −10dBm in a frequency range of 36 kHz to 500 kHz
for static noise SMPS was considered. By using a k-means clustering a mean
accuracy of 93.8% for individual device classification was stated. In contrast to
[Gup10], the work of Chen [Che15] concentrates on time varying noise behaviors
induced by mechanical switching (e.g., vacuum cleaner). Moreover, they used
semi-supervised classification in contrast to supervised classification to decrease
the required training effort. The paper stated an average accuracy of 93.8%.
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Norford and Leeb [Nor96] showed that also transient events from power signals
are suitable as a characteristic load disaggregation feature. Chang in [Cha10]
and [Cha12] used power signatures including active, reactive power and the
harmonic distortion of voltage and current signals for load disaggregation.
They used a sampling frequency of 30kHz and showed that they achieve better
classification results with transient events compared to steady state features.
Another example is given by Shaw in [Sha08] who presented a transient-based
approach working in the traditional AC grid as well as in a DC environment
of an automobile. Finally, a high frequency approach was presented by Patel
[Pat07] considering a sampling frequency up to 1 MHz . He used the voltage
noise during switching events for load disaggregation. He tested his approach
on several households and appliances (e.g., light switch, TV). He achieved an
accuracy range of 85 − 90% with standard machine learning techniques.

2.2.2 Appliance Classification

Recent approaches solving the load disaggregation problem can be distinguished
between supervised and unsupervised approaches. A good overview on super-
vised approaches is presented in [Zei11] and [Zoh12]. In general, supervised load
disaggregation approaches need a labeled data set to train a classifier and can
be divided into optimization and pattern recognition [Sha08] based algorithms.
In the optimization based approaches, the problem of aggregated power profiles
is modelled by an optimization problem. The total power consumption and a
database of known appliance power profiles are given. With this knowledge,
a random composition of appliances is selected and their power profiles are
aggregated over time to approximate the total power consumption with minimal
error. Baranski in [Bar04] presented a pattern detection approach based on
genetic algorithm and integer programming. The algorithm was structured
by the stages: event detection, fuzzy clustering, FSM creation with genetic
algorithm and optimizing FSM with integer programming. The algorithm was
tested with simulations and with real world data at a sampling frequency of
1s. Suzuki in [Suz08] used an integer programming approach for NILM. They
used the current waveform of appliances with a sampling interval of 25µs. The
success rate of the waveform estimation varied between 62% (15 different appli-
ances) and 97% (7 different appliances) according to the used appliances. In
case of pattern recognition approaches, proposed methods are based on clus-
tering methods as presented by Hart in [Har92]. Another possible example are
approaches using neural networks algorithms by Srinivasan [Sri06]. Srinivasan
tested several neural network based classification models including multilayer
perceptron (MLP), radial basis function (RBF) network, and support vector ma-
chines (SVM) with linear, polynomial, and RBF kernels [Sri06]. He stated that
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MLP and SVM both reached high accuracies in which MLP is preferable due
to its low computational requirements. The classification accuracy on appliance
level varied between 60% and 100% according the used number of appliances (8
or 10) and classification approach. Moreover, Lin in [Lin10] suggested a combi-
nation of Bayesian networks (including user behavior) and Bayesian filtering
(classification) for NILM and compared the results to commonly used classifiers
as naive Bayes, k-nearest neighbours and support vector machines. Lin showed
that his approach outperforms the standard classifiers with an accuracy of 92%
by using 9 different appliances and a set of 9 different features extracted from
the power measurements. In general, supervised load disaggregation approaches
reach a suitable and also quite high classification result. Reason for this are
the necessary training phases based on a priori information. This fact is also
the disadvantage of supervised classification approaches. In particular, in many
load disaggregation problems the a priori information of appliances and their
characteristics is available only partly or even not at all. Training is necessary,
which could be costly and tedious.
Accordingly, recent research in NILM is giving focus to unsupervised algorithms,
which are using unlabelled data and need no training data. Unsupervised
algorithms do not need any training data and therefore, no a priori informa-
tion of the system. In [Lia14], an unsupervised load disaggregation approach
based on dynamic time warping and a supervised approach based on decision
trees is presented. They used the REDD dataset and the REFIT dataset1

for their evaluations with a sampling frequency of seconds and minutes. The
results were compared with an HMM based algorithm [Par12] (success rate of
66%) and achieved a success rate of 85 − 90% with 9 appliances. A further
unsupervised NILM approach was presented in [Gon11] concentrating on the
clustering of power events. Recent approaches are very much interested in
HMMs based algorithms. The use of the HMM based algorithm is beneficial
due to their characteristic to model stationary processes with continuous valued
data over discrete time. One of the first approaches was published in [Zia11].
The approach was modelled as a combined set of loads (fridge, dishwasher,
microwave, computer and printer) and was evaluated with the waveforms of
real and estimated waveforms. Another approach was presented by Pattem
in [Pat12]. Pattem used the REDD dataset and got disaggregation results
of the total energy between 56 − 67%. Due to HMMs also factorial HMMs
(FHMM) are used to model the load disaggregation problem. A FHMM makes
it possible to model independent appliances by decreasing the state space of
problem. An approach based on FHMM is presented by Zoha in [Zoh13]. Zoha
used an own set of appliances (work station, LCD, Laptop, desk lamp, table

1REFIT: Personalised Retrofit Decision Support Tools for UK Homes using Smart Home
Technology, http://www.refitsmarthomes.org/index.php/refit-launches.
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fan) with a sampling frequency of 3 s. Appliances were modelled as on/off
and multi-state appliances reaching an accuracy of 90% for on/off appliances
and 80% for multi-state appliances. Latest, different variants of FHMMs were
introduced. Kolter in [Kol12] introduced additive FHMMs (the output of the
FHMM is an additive function of the hidden states) and difference FHMMs
(the output of the FHMM is the difference of the hidden states). By testing the
REDD dataset, Kolter got an average precision of 87% and an average recall
of 60% for 7 appliances. Kim in [Kim11] used so called conditional factorial
hidden semi-Markov models to increase the used feature set by the features
when and how appliances are used in homes. He tested his approach for 4 up
to 10 appliances reaching a F-measure of 72% up to 99% dependent on the
used number of appliances. Wong in [Won14] used a semi-HMM to represent
more realistic appliance usage models, whose transitions are not geometrically
distributed. He included state duration characteristics in the transition matrix,
tested the approach on the REDD dataset (7 different appliances) and achieved
an average precision of 79.9% and an average recall of 89.3%. Also modern
data mining techniques are considered to solve the load disaggregation problem.
Shao in [Sha12] used temporal motif mining to perform load disaggregation
on private and commercial households. She used motif mining and combined
her approach also with the one proposed by Kolter in [Kol12]. The combined
approach reached higher performance than the individual approaches on the
REDD dataset with 14 different appliances. Based on the general problem
definition to separate appliance level data from the aggregated data without
feedback also blind source separation techniques are recently used. Figueiredo in
[Fig13] introduced an approach based on source separation via non-negative ten-
sor factorization. She tested her approach also on the REDD dataset providing
better results on the disaggregation error than the approach of Kolter in [Kol12].
Many of the presented approaches are not considering the problem how to label
appliance data. Usually an unsupervised load disaggregation approach has not
the knowledge of the appliance type that is tried to be detected. Approaches
performing automatic labelling are conducted on Bayesian inference [Joh13]
and on a semi-supervised classification [Par14, Par12]. Parson used a generic
appliance model and showed that this model can be tuned to a specific appliance
instance using only aggregate data.

2.3 Summary

In this chapter the related work on the load monitoring topic for homes was pre-
sented. Load monitoring can be differentiated into intrusive and non-intrusive
load monitoring. These two approaches differ in the number of measurement
points. Intrusive load monitoring uses a distributed sensor approach in which
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non-intrusive load monitoring is based on a single sensor measuring the ag-
gregated power of a home. In the sense of intrusive load monitoring the term
load identification was reviewed. The task of load identification is to identify
connected appliances at a smart socket/plug with smart algorithms. This
approach is highly related to NILM in which NILM tries to identify multiple
connected appliances and load identification tries to identify one connected
device. In this chapter, we provide a comprehensive review of the state-of-the-
art for NILM. We divided the review by the general framework of a NILM
approach consisting of data acquisition, feature extraction, classification and
event labelling. We showed that we have to distinguish between steady-state
based and transient-based approaches. The sampling frequency correlates with
the number of extractable features. The higher the frequency, the more signifi-
cant are the electrical features in general. This also applies if more than one
electric quantity as for example active and reactive power are considered by
NILM. The more features are used, the more information can be included in
an appliance model and accordingly, makes the model more significant. We
then provided also a review on different classification techniques divided into
supervised and unsupervised load disaggregation techniques. One of these two
general classification families have to be used dependent on the presence of a
priori information (number of appliances known or not, appliance characteristics
known or not, etc.). To conclude, we claim that there exist no general solution
for NILM. Each proposed NILM technique is a solution for a certain application
and different system characteristics. Terms such as considered appliance type
(on/off, multi-state, etc.) number of appliances, degree of a priori knowledge
(supervised vs. unsupervised) and sampling frequency (the higher the sampling
frequency, the higher the extractable electrical features) are the main distinctive
features and dependencies between different NILM approaches.
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CHAPTER

3
Load Disaggregation as a
Knapsack Model

”We can’t solve problems by using the same kind
of thinking we used when we created them”

– Albert Einstein

In this chapter, we are concentrating to model the problem to disaggregate
appliance power data from the aggregated power draw by an optimization
approach modelled as a knapsack. The aim is to optimize an objective function
retrieving the information which appliance is running at which point in time.
The first approach on this topic was proposed by Hart [Har92] where he stated
that the load disaggregation problem can be modelled as a subset sum problem.
He faced the problem that even if all power states of appliances are known small
fluctuations and similarities between power states lead to a dramatical decrease
in the performance of the approach. To verify the statement provided by Hart
we model the load disaggregation problem as a knapsack problem. To solve this
problem, we aim to use state-of-the-art metaheuristic optimization approaches
such as i) the evolutionary algorithm, ii) differential evolution, iii) particle swarm
optimization, iv) simulated annealing, v) the cuckoo search algorithm and vi)
firefly optimization due to their ability to solve the knapsack problem. We
evaluate the performance of the load disaggregator on real world data in which
similar and realistic consumption behaviors are present.

The remainder of this chapter is organized as follows: Section 3.1 provides
a comprehensive summary of all used metaheuristic optimization approaches.
Section 3.2 describes the proposed approach and how to model the load disag-
gregation problem as a knapsack problem. In Section 3.3 the evaluation settings
are presented. Section 3.4 provides evaluations of case studies to evaluate the
proposed approach. Finally, Section 3.5 discusses the presented results and
Section 3.6 summarizes the chapter. Parts of this chapter are based on the
published works [Ega13c] and [Ega13b].

17



3.1 Meta-Heuristics 3 Load Disaggregation as a Knapsack Model

3.1 Meta-Heuristics

Every time we are trying to maximize the profit or to optimize a problem, we
are optimizing an objective function. This objective function can be described
mathematically and solved by different techniques. Modern search algorithms
can be divided into deterministic and stochastic algorithms. Deterministic
search algorithms are reproducible as stochastic algorithms having always
some randomness. In this work, we are concentrating on stochastic algorithms
based on metaheuristic algorithms. Basic operation is the random walk, which
searches randomly for solutions in the vicinity of a given solution. In contrast to
heuristics, which are problem dependent, metaheuristic algorithms are following
a black box scheme. Metaheuristic algorithms provide problem-independent
techniques in which a deterioration of a solution is acceptable and the algorithm
parameters have to be adopted to the problem. Accordingly, metaheuristic
algorithms are trying by trial and error to get the best solution in a reasonable
time without a guarantee of the best result. They have a randomization and
local search part, in which the algorithms are characterized by the ability to
balance between exploitation of the best solution found and exploration of
new solutions. Exploration means to generate several possible solutions for the
objective function and exploitation means to find local best solutions. The
best solutions are recombined and kept to ensure the convergence towards an
optimal solution. In the past, several metaheuristic algorithms were introduced.
This work concentrates on six different metaheuristic algorithms trying to
solve a simplified load disaggregation problem as objective function. We are
considering i) the evolutionary algorithm, ii) differential evolution, iii) particle
swarm optimization, iv) simulated annealing, v) the cuckoo search algorithm
and vi) fire fly optimization. In the following, each metaheuristic approach is
described on their functioning and characteristics.

3.1.1 Evolutionary Algorithm

The Evolutionary Algorithm (EA) is a population-based optimization approach
inspired by the evolution of natural life [Eib03]. A set of individuals represents
a population. The algorithm aims at optimizing the population according
to a fitness or objective function over several generations. The individuals
are modified by the evolutionary operators mutation (mutation of individuals),
recombination (combination of individuals) and selection (selection of individuals,
which will survive, i.e., remain in the population for the next generation). The
first task of an evolutionary algorithm is to encode the optimization function. In
the case of the genetic algorithm an array of bits is used to encode the problem
in which the evolutionary algorithm uses the decision variable and the problem
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function. Next step is to define a fitness function providing a feedback of the
optimization process solving the given problem. The optimization process is
performed several generations until the stopping criteria for the algorithm is met
(e.g., max number of iterations, fitness result is optimal). Each iteration a new
population is generated. The main part of the algorithm is the manipulation of
the populations and the selection of solutions according to their reached fitnesses.
To manipulate the populations, the operators mutation and recombination are
used. The mutation operator modifies a randomly chosen bit of the population
with a probability pm. The crossover operator represents the recombination of
two parent strings. Two strings of the population are chosen and two segments
of the strings are created. These strings are swapped by a probability pc
between the two parent strings. The selection of solutions are based on the
achieved fitness performance. In general, the best solutions are reused in the
next generation. This process is called elitism strategy since the fittest solutions
are surviving a generation or iteration. The pseudo code of the EA is shown in
Algorithm 1 [Yan10b]. The EA has several parameters and design choices. For

Algorithm 1 Evolutionary Algorithm

1: Objective function f(x), x = (x1, . . . , xd)
2: Encode the solution into chromosomes (binary strings)
3: Define fitness F (e.g., F ∝ f(x) for maximation)
4: Generate the initial population
5: Initial probilities for crossover pc amd mutation pm
6: while t < max number of generations do
7: Generate new solution by crossover and mutation
8: if pc > rand then
9: Crossover

10: end if
11: if pm > rand then
12: Mutation
13: end if
14: Calculate fitness
15: Select best solution for next generation (elitism)
16: end while
17: Decode result

example different mutation or crossover strategies can be applied. Moreover,
the number of populations and the number of generations can be modified. The
parametrization and the design choices for each EA are the crucial part. The
choice of parameters and operator strategies are often application and problem
dependent.
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3.1.2 Differential Evolution

The Differential Evolution (DE) [Das11] is a special form of the EA. Each
population of a generation consists of a candidate solution of the objective
function. The algorithm maintains candidate solutions and creates new solu-
tions by combining existing ones based on simple formulas. The candidate
solutions are evaluated based on a given fitness or objective function as for
the evolutionary algorithm. In particular, the algorithm perform the steps
mutation, recombination and selection. The first task is the mutation step
choosing for each generation vector xi three distinct vectors xp, xq and xr. With
these vectors a so-called donor vector is created by:

vt+1
i = xtp + F (xtq − xtr). (3.1)

The parameter F is the differential weight and usually in the range [0,2]. In
the crossover stage, the candidate solutions are modified as follows:

ut+1
j,i =

⎧⎪⎪⎨⎪⎪⎩

vtj.i, if ri ≤ Cr
xtj,i, otherwise.

(3.2)

The parameter ri is a uniform distributed random number and Cr is the crossover
probability. The equation determines if a component of the candidate vector
is replaced or not. Finally, the algorithm performs a fitness evaluation of
the solutions to find the fittest candidates in the population. A pseudo-code
description of the algorithm is presented in Algorithm 2 [Yan10b].

3.1.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO)[Wei04] is a population-based algorithm,
in which the population with its candidate solutions is represented as a swarm
of particles. The aim of the swarm is to move around the search space guided
by their position and the position of the best candidate solution. A particle is
attracted by the best particle g and its own best x∗i in history. A movement of
a particle is performed if a particle finds a better position (better result of the
objective function) than the current one. Moreover, all particles are evaluated
on its performance to find the global best solution g. The search of the global
best particle lasts until either a maximum number of iterations is reached or the
global best solution is not improving any more. The movement of the particles
is determined by the current position xi and a velocity vector vt+1

i defined as:

vt+1
i = vti + αε1 ⊙ [g − xti] + βε2 ⊙ [x∗i − xti]. (3.3)

The variables ε1 and ε2 are random vectors between 0 and 1. The operator
⊙ represents the entrywise product of two vectors. The factors α and β are

20



3 Load Disaggregation as a Knapsack Model 3.1 Meta-Heuristics

Algorithm 2 Differential Evolution

1: Objective function f(x), x = (x1, . . . , xd)
2: Initialize the population x with randomly generated solutions
3: Set the weight F ∈ [0,2] and crossover probability Cr ∈ [0,1]
4: while stopping critertion do
5: for i = 1 to n do
6: For each xi randomly choose 3 distinct vectors xp, xq and xr
7: Generate a new vector v
8: Generate a random index Jr ∈ {1,2, . . . , d} by permutation
9: Generate a randomly distributed number ri ∈ [0,1]

10: for j = 1 to d do
11: For each parameter vj,i (j-th component of vj), update
12: if ri ≤ Cr or j = Jr then
13: ut+1

j,i = vt+1
j,i

14: else
15: ut+1

j,i = xtj,i
16: end if
17: end for
18: Select and update the solution
19: end for
20: Increment counter t
21: end while

the so called learning parameter or acceleration constant. The initial values at
t = 0 can be set to 0 for xi and v. The pseudo code of the PSO is presented in
Algorithm 3 [Yan10b].

Algorithm 3 Particle Swarm Optimization

1: Objective function f(x), x = (x1, . . . , xd)
2: Initialize the location xi and the velocity vi of n particles
3: Initialize minimum f t=0min =minf(x1, . . . , xn) (at t = 0)
4: while criterion do
5: for loop over all n particles and all p dimensions do
6: Generate new velocity vt+1

i

7: Calculate new location xt+1
i = xti + vt+1

i

8: Evaluate objective function at location xt+1
i

9: Find the minimum f t+1
min

10: end for
11: Find current best xi and global best g
12: end while
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3.1.4 Simulated Annealing

The Simulated Annealing (SA)[Haj85] approach is inspired by the annealing
of metallurgy, where metal is heated up and slowly cooled down to strengthen
the metal structure by rearranging the crystal structure. In general, simulated
annealing is random search based. It considers changes of information improving
the objective function as well as information changes not be ideal. Each solution
decreasing the objective function (in case of a minimization problem) is accepted.
Moreover, also changes increasing the objective function are accepted with a
probability p. This probability p is defined as:

p = exp(−∆E

kBT
), (3.4)

where kB is the Bolzmann’s constant, T the temperature to control the annealing
process and ∆E the change in the energy level. The energy change ∆E is
described by:

∆E = λ∆f, (3.5)

where ∆f is the objective function to be optimized and λ is a constant. By
setting kB = 1 and λ = 1, the probability p becomes:

p = exp(−∆f/T ) (3.6)

The next step is then to define a random number r to decide if p should be
accepted or not. This is done be checking:

p = exp [−∆f/T ] > r. (3.7)

This optimization approach improves its candidate solution over a number
of simulation steps in the cooldown process. In contrast to EA, DE, and
PSO, there is no influence between the selection and development of candidate
solutions in relation to the other candidates, thus SA is not population-based.
Another important parameter of annealing process is the starting temperature
T0. The control of the annealing and cooling process is commonly done linear
or geometric [Yan10b]. The final step of SA is how to set the number of
used iterations N . Commonly used possibilities are to set N fixed or variable
(dependent on the current temperature) to achieve a desired solution quality.
The pseudo code of the simulated annealing process is presented in Algorithm 4
[Yan10b].

3.1.5 Cuckoo Search Algorithm

The Cuckoo Search Algorithm (CS)[Gan13] is inspired by the brood parasitism
of cuckoos laying their eggs into nests of other birds of different species. An egg
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Algorithm 4 Simulated Annealing

1: Objective function f(x), x = (x1, . . . , xd)
2: Initialize initial temperature T0 and initial guess x(0)

3: Set final temperature Tf and max number of iterations N
4: Define cooling schedule T ↦ αT , (0 < α < 1)
5: while T > Tf and n < N do
6: Move randomly to new location xn+1 = xn + ε (random walk)
7: Calculate ∆f = fn+1(xn + 1) − fn(xn)
8: Accept the new solution if better
9: if not improved then

10: Generate random number r
11: Accept if p = exp [−∆f/T ] > r
12: end if
13: Update the best x and f
14: n = n + 1
15: end while

in a nest is representing a solution of an optimization problem and a cuckoo egg
stands for an new solution. In general, each nest has one egg which could be
extended to several eggs per nest dependent on the problem and representation.
Based on the representation, the algorithm is following the subsequent ideas as
described in [Yan10b]:

• Each cuckoo places one egg at a time, and randomly puts it in a desired
nest.

• The nests are qualified according to their nest and high quality nests will
survive form one generation to the next generation.

• The number of available hosts nests is defined. The egg is laid by a cuckoo
and is discovered by the host bird with a probability pa ∈ (0,1). In this
case, the egg is discovered, the host bird either get rid off the egg or build
a completely new nest leaving the old nest.

The task of CS is now to find good and better cuckoos (solution) and replace
bad eggs with the better solutions. The pseudo code of the CS is presented in
Algorithm 5 [Yan10b].

For the random generation of a new solution/nest x(t+1) a Levy Flight is
performed and is represented as:

x
(t+1)
i = xi⊕Levy(α). (3.8)
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Algorithm 5 Cuckoo Search

1: Objective function f(x), x = (x1, . . . , xd)
2: Generate an initial population of n host nests
3: while (t <maxGeneration) or (stop criterion) do
4: Get a cuckoo randomly/generate a solution i by Levy flights

and evaluate its fitness Fi
5: Choose a nest among n (say j) randomly
6: if Fi > Fj then
7: Replace nest j by the new solution i
8: end if
9: A fraction pa of worse nests are abandoned and new ones/solutions are

generated
10: Keep best solutions/nests
11: Rank the solutions/nests and find the current best
12: Pass the current best solutions/nests to the next generation
13: end while

The variable α represents the step size and ⊕ a piecewise multiplications. The
use of the Levy Flight is beneficial since it is more efficient to explore a search
space as a simple random walk. In detail, the Levy Flight based on the random
walk having a step size based on the Levy distribution:

Levy ∼ u = t−λ, (3.9)

where 1 < λ ≤ 3.

In summary, the CS has three major characteristics. First, the algorithm
is population-based. Second, the randomization is efficient because of using
a step size based on Levy flights. Third, the parameters to be tuned for the
optimization process are the number of nests n and the parameter pa. The
suggested choice of the parameter for the nest is n = 15 to 40 and for the discover
probability is pa = 0.25. The last characteristic represents also the benifical
advantage to use CS since GA and other metaheuristic approaches are based on
more parameters in which CS produces similar or better optimization results
[Yan10b].

3.1.6 Firefly Algorithm

The Firefly Algorithm (FA)[Yan10a] is inspired by the flashing behavior of
fireflies. The aim is to flash synchronous to attract other fireflies. The attrac-
tiveness is proportional to the brightness of a firefly in which the brightness
represents the objective function. In detail, the FA is based on the following
rules [Yan10a]:
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• As opposed to nature, all fireflies are unisexual. One firefly will be
attracted by all other fireflies.

• Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less brighter one will move towards the brighter one. The
attractiveness is proportional to the brightness and the both decrease as
their distance increases.

• If there is no brighter one than a particular firefly, it will move randomly.

• The brightness of a firefly is affected or determined by the landscape of
the objective function

The basic principle as described is presented as pseudo code in Algorithm 6
[Yan10b].

Algorithm 6 Firefly Optimization

1: Objective function f(x), x = (x1, . . . , xd)
2: Generate an initial population of fireflies x
3: Light Intensity Ii at xi is determined by f(xi)
4: Define a light absorption coefficient γ
5: while (t <maxGeneration) do
6: for i = 1 ∶ n all n fireflies do
7: for j = 1 ∶ n all n fireflies (inner loop do
8: if Ii > Ij then
9: Move firefly i towards j

10: end if
11: Vary attractivness with distance r via exp[−γr]
12: Evaluate new solutions and update light intensity
13: end for
14: end for
15: Rank fireflies and find the current best
16: end while

In detail, the brightness stands for the objective function of the optimization
problem. The attractiveness is proportional to the light intensity recognized by
neighboring fireflies where the attractiveness β is formulated as:

β = β0 exp(−γr2). (3.10)

The variable β0 represents the attractiveness at r = 0. The movement of the
firefly i attracted by another firefly j is formulated as:

xt+1
i = xti + β0 exp(−γr2

ij)(xtj − xti) + αtεti. (3.11)
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The second term of formula 3.11 is the attraction from firefly j on firefly i.
The third term represents the randomization where αt is the randomization
parameter and εti is a vector of random numbers generated by a Gaussian
or uniform distribution at time t. The randomization factor αt can be well
described by:

αt = α0δ
t, (3.12)

where 0 < δ < 1 and α0 is the initial randomness factor. In [Yan10b], it is
recommended to use α = 0.95 to 0.97. The factor β0 should be chosen between 1
and γ dependent on the problem [Yan10b]. Finally, the population size should
be usually chosen as n = 15 to 100 [Yan10b].

By setting β0 = 0, the optimization process becomes a simple random walk
in which by setting γ = 0, the process becomes a variant of the particle swarm
optimization [Yan10b].

3.2 Approach

The power demand of households depends on the used appliances. Typically,
each appliance has a characteristic way of consuming energy. For example, one
appliance is consuming a high amount of energy for a short period of time or
another appliance behaves in a multi-state manner consuming in each running
state a different amount of power. The total power load can be considered as
the superposition or the aggregation of the power profiles from each appliance
over time. G. Hart (et. al [Har92]) provided the idea to use the knowledge of
appliance characteristics and the aggregated power demand to introduce the
problem of load disaggregation or non-intrusive load monitoring (NILM). NILM
breaks down the aggregated power demand to its components on appliance
level. He classified the problem to disaggregate appliances as computational
intractable belonging to the group of NP-complete problems. An example for
the aggregated total power load and the disaggregated loads on the appliance
level is shown in Figure 3.1. The aim of the load disaggregator is to find the
best composition of appliance power states minimizing the error between an
estimated signal and the real signal. In this context, the major problem for
NILM is that appliance power states used by a load disaggregation approach
are noisy (detected power states are not perfect; appliance states are varying in
some ranges over time) and that the measured total power load used by the
load disaggregation approach is influenced by measurement noise. Accordingly,
a load disaggregation approach has to deal and to overcome noise influences to
find the best composition of appliance power states. A possible approach is to
perform load disaggregation based on optimization which tries to find the best
solution with known information.
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Figure 3.1: The aggregated power draw is created by the aggregation of each
appliance power profile in a house. Each appliance as in the figure has a different
way of consuming power in which each appliance is operated in different times
of day. The aggregated power draw corresponds to the superimposition of this
appliance created power draws.

In this chapter we concentrate on a supervised approach solved by optimiza-
tion. Optimization is a feasible approach due to their ability to find solutions in
a noise influenced environment. The first task is to define an objective function
to be optimized. The aggregated power draw P (t) can be modelled by:

P (t) = p1(t) + p2(t) + ⋅ ⋅ ⋅ + pn(t) for t ∈ {1, T}, (3.13)

where pi(t) is the power profile of each appliance in the set of N appliances and
t represents the discrete time vector from 1 to T . The problem is to find the
best set of appliance power profiles whereas each power profile is activated by
an appliance being in a on or off state. We can model the problem as:

e(t) =∣ (P (t) −
N

∑
i=1
pi ⋅ ai(t)) ∣ (3.14)

where ai(t) represents the appliance state vector (e.g., appliance is on or off). In
this work, we are modelling the presented optimization problem as the so-called
knapsack problem [Sal75, Ega13c]. The knapsack problem is a well-known
optimization problem with the aim of packing a set of n items with a certain
weight wi and profit di into a knapsack of capacity C in the most profitable
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way. If it is possible to place a item into the knapsack without exceeding the
capacity C by using xi ∈ {0, 1}, which is responsible for whether or not a certain
item is used, a profit di is earned. This context can be summarized as follows:

maximize
n

∑
i=1
di ⋅ xi, (3.15)

subject to
n

∑
i=1
wi ⋅ xi ≤ C. (3.16)

The problem of packing items into a desired shape can be adopted to the
load disaggregation problem. NILM has the aim to disaggregate loads from
the aggregated power demand according to their own power profile pi in the
measured total load P (t). The power profiles pi are mainly characterized by
their power magnitude mi and their time of usage. The total power load is
given by:

P (t) =
n

∑
i=1
Pi ⋅ ai(t) + e(t), (3.17)

where n is the number of known and used appliances, ai(t) ∈ [0,1] represents
the state vector of the appliance being on (ai(t) = 1) or off (ai(t) = 0). e(t)
describes an error term. The general optimization problem of NILM can be
formulated as the minimum error e(t) of the total power load and the estimated
aggregation of appliance power profiles:

e(t) = arg min ∣P (t) −
n

∑
i=1
Pi ⋅ ai(t)∣. (3.18)

The NILM system tries to find the appliance states by ai(t) to minimize the
error between the sum of superimposed appliance power profiles and the total
load P (t). This relates to the knapsack problem, where in the case of NILM the
capacity C of the knapsack corresponds to the total load P (t) and the items of
the knapsack correspond to the appliance power profiles Pi. We assume that the
profit di equals 1 since we suppose that all appliances in the household are of
equal importance concerning their usage. The aim of any optimization approach
is to find a composition of power profiles Pi, which can be packed into the
measured total load P (t) with minimum error. We modify the general knapsack
problem by dismissing the profit maximization with an error minimization. An
illustration of the basic principle can be seen in Figure 3.2, where a collection
of possible power profiles Pi and the trend of the total power load are presented.
In detail, the approach tries to find for each point in time the best composition
of appliance power profiles described by their power demands. The optimization
approach has to optimize the vector ai(t) represented as a binary vector. The
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Figure 3.2: The approach estimates the optimal set of appliance power states
for each used time sample with the table of possible power states

value 1 means an appliance is on at time t and 0 means an appliance is off at
time t. The objective function is represented by:

Fs = −∣P (t) −
N

∑
i=1
Pi ⋅ ai(t)∣. (3.19)

It describes a minimization problem with an optimal fitness of 0. The opti-
mization process of the state vector ai(t) is done on each power sample. We
used six different optimization approaches to solve this problem consisting of
the i) the evolutionary algorithm, ii) differential evolution, iii) particle swarm
optimization, iv) simulated annealing, v) the cuckoo search algorithm and vi)
fire fly optimization.

3.3 Settings

3.3.1 Algorithm Settings

All metaheuristic optimization approaches are modified to work with discrete
inputs. This is mainly done by rounding the results from the continuous case to
the discrete values 0 and 1. However, the used metaheuristics are dependent on
different parameters. In Table 3.1 all parameters are presented. The parameters
were chosen based on empirical evaluations.
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Algorithm Parameter Value

EA, DE, PSO FA No. of generations g 200

EA, DE, PSO Population size p 100

EA, Mutation operator uniform mutation

EA, Recombination operator one-point crossover

EA, Selection operator elite selection

DE Crossover probability 0.5

DE Scaling factor 0.8

PSO Coparmnitive parameter c1 2

PSO Social parameter c2 1

PSO Constriction parameter C 1

SA Cooling steps 200

SA Maximum intial tempera-
ture

100

CS Number of nests 50

CS Discovery rate 0.25

FA Number of firefies 50

FA Randomness factor 0.9

FA Randomness reduction fac-
tor

0.95

FA Absorption coefficient 0.2

Table 3.1: List of parameters for each used metaheuristic optimization approach

3.3.2 Data Settings

To test the proposed approach real-world measurements of appliances are used.
There exist several public available datasets such as the REDD dataset [Kol11],
the Eco-dataset [Bec14], the GREEND dataset [Mon14a] and the AMPD dataset
[Mak13] (see Section 4.2), which are suitable data sources for an evaluation. We
have chosen the REDD dataset as reference dataset because it is well known
and one of the most popular datasets in the NILM community and meets the
requirements having appliance-level measurements with low sampling rates.
The dataset provides appliance level power measurements in 1s resolution for 6
different houses. For our evaluation, we took the first house with 6 common
appliances (oven, fridge, dishwasher, kitchen outlet, microwave and washing
dryer). We derived for each appliance the present power states. We distinguished
between automatic detected power states and power states detected by expert
knowledge. In the case of automatic detected power states, we used the identified
states from Table 4.5. The states are detected from submetered power draws
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where similarities between power states are possible. In Table 3.2 the used
appliances and their characteristics are listed. For the other case, detected
power states are identified by the human. Small power states such as standby
power are considered in contrast to automatic detected power states.

3.3.3 Evaluation Metric

To be able to evaluate the performance of the metaheuristic knapsack approach,
we evaluate the energy consumption for each appliance and compare it to the
ground truth energy data. The power draw for each power state is optimized
individually. The power states and their resulting optimization results belonging
to an appliance are grouped and compared to the ground truth, respectively.

3.4 Case Studies

To check the applicability of the metaheuristic based load disaggregation ap-
proach we introduce two case studies i) appliance set with ambiguous power
values and ii) appliance set with unambiguous power values.

3.4.1 Appliance Set with Ambiguous Power Values

In this case study, we decided to use real world consumption data in which
appliances have similar consumption behaviour. Thus, the amount of power
consumed by an appliance A can be similar to the one consumed by appliance
B. The case study should show if the approach is able to distinguish between
appliances even if they have similar and ambiguous power demands or if the
combination of power states leads to another power state. In case of the REDD
dataset, we used 6 appliances of house 1 in which we identified the following
appliance states for each appliance listed in Table 3.2 as utilizable. The input
for each metaheuristic approach are the power states listed in Table 3.2 and we
used an observation window of one day.

In Figure 3.3, 3.4 and 3.5 the energy shares of the approaches and in
Figure 3.6 the ground truth energy shares are presented. The energy shares
of the washing dryer are not shown since the device was turned off during the
whole observation time and the algorithms always detected this fact. We claim
detecting an appliance to be off is of the same difficulty as to detect an appliance
to be on. There exists no preferred state for the optimization process.

However, the results show that the approach is not able to distinguish
between different appliances. It is able to track and to optimize the problem.
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type states power in Watt

A1: oven 3 [0 1690 2455]

A2: fridge 2 [0 190 ]

A3: kitchen outlet 5 [0 210 440 880 1100]

A4: microwave 3 [0 60 1533]

A5: stove 4 [0 260 710 1440]

A6: washing dryer 2 [0 2712]

Table 3.2: Table of used appliance types, the number
of operation states and the corresponding power values
for each operation state for the case study of ambiguous
power values.

The mean error between optimized and real power draw is around 13W and
is in an sufficient and satisfying range. Nevertheless, the similarity of power
states, the possible representation of an power state by a combination of other
states and noise effects are influencing the problem heavily. The appliances
oven, fridge and kitchen outlet have similar power states heavily influencing the
optimization result. This influence is presented comparing the energy share of
the fridge and the kitchen outlet with real energy shares, respectively.

Also the error in total is high. As reason we claim the influence of noise
effects and perfectly modelled appliance states. Moreover, the influence of
different metaheuristics algorithms can be neglected. All algorithms had this
problem and produced similiar results.

3.4.2 Appliance Set with Unambiguous Power States

In contrast to the previous section we are now considering appliance states
which occur unambiguously. Similarities between appliances are only possible
for very small power values such as the standby power. In Table 3.3 all possible
power states are listed. Each state was empirically identified by human. The
input for the metaheuristic load disaggregator are the power states listed in this
table and we used an observation window of one day.

Figure 3.6 presents the estimated and the real energy share. The results are
improved compared to the previous case study. Clearly distinguishable power
states as for the oven and the fridge can be estimated very well. Nevertheless,
also in this case study the effect of similar/recombined of power states and
noise effects are present and affecting the results. In this evaluation we took the
energy share of the evolutionary algorithm as representative case since all other
approaches achieved nearly the same result. The only exception was the result
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Figure 3.3: Energy shares for the optimization results of EA and DE with
similar power states
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Figure 3.4: Energy shares for the optimization results of PSO and SA with
similar power states

for the simulated annealing case study. In this case study the oven reached
only 5% and the stove 14%. The other estimates were very similar. As in the
previous case study, the washing dryer is not shown in this figure since it was
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Figure 3.5: Energy shares for the optimization results of CS and FA with
similar power states

type states power in Watt

A1: oven 2 [0 1600]

A2: fridge 4 [0 8 190 2000]

A3: kitchen outlet 2 [0 1080]

A4: microwave 3 [0 5 1550]

A5: stove 2 [0 1430]

A6: washing dryer 2 [0 2700]

Table 3.3: Table of used appliance types, the number of
operation states and the corresponding power values for
each operation state for the case study of unambiguous
power values.

not used in the observed time and was well detected by all approaches.

Moreover, the total error of the optimization result is getting better as well
as the mean error between optimized and real power draws over the time (error
of 7W ). As reason we claim the fact of different/dissimilar power states and
the lower number of possible power states. The lower the number of considered
power states, the better is the result of the optimization.
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Figure 3.6: Energy shares for the optimization results of EA with unique power
states and the ground truth energy shares

3.5 Discussion

The presented approach was not able to distinguish multiple power states which
are similar to each other or can be recombined by other power states. The
reason for this is expected to be the lack of information based on the use of
one feature (in our case the power value of a state). From this we conclude
that the problem has to be modelled by more advanced techniques including
appliance structure (e.g., state machine), timing behaviors and probabilistic
representation. All presented metaheuristic approaches achieved similar results.
The choice of the algorithm is based on the computational time, the set of
selectable parameters and the chosen applications. The approach is suitable for
NILM applications with a low number of appliances with different power states.
A possible application would be a power plug or multiple power plugs to detect
attached appliances.

3.6 Summary

In this chapter a simple load disaggregation approach based on metaheuris-
tic optimization modelled as a knapsack problem is presented. Six different
metaheuristic algorithms (evolutionary algorithm, differential evolution, particle
swarm optimization, simulated annealing, cuckoo search algorithm, firefly opti-
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mization) were tested according to their ability to disaggregate loads from the
total power demand. The approach uses a simple set of appliance power set and
tries to find out of this set the optimal composition of appliance power states to
minimize the error between the estimated and real power draw. The approach is
related to the well-known knapsack problem and modified according to problem
specific characteristics. The approach was tested on real-word measurements in
which we varied the used set of appliance power states. The results show that
the algorithm provides satisfying results for an appliance set where almost no
similar appliances are present. For similar appliances the approach was not able
to disaggregate appliance power draws due to lack of further information which
would be necessary to distinguish between similar appliances. The problem for
the algorithm are power states and their combinations between power states. It
is very probable that power states are combinations of other power states and
the presented approach tries only to find these combinations. The algorithm has
no knowledge of appliance characteristics such as structure or time behaviors.
Load disaggregation approaches using model representation such as hidden
Markov models as in [Kol11] or [Pat12] are performing better and are more
flexible with noise influences. Accordingly, the presented approach is suitable
for simple load disaggregation tasks. To achieve better load disaggregation
results the approach has to be improved by enlarging the feature set of the
optimization (e.g. using multi-objective optimization) or by a different objective
function taking into account subsequent time slots.
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CHAPTER

4
Complexity Analysis of
Load Disaggregation

”The art of simplicity is a puzzle of complexity.”

– Douglas Horton

In this chapter, two complexity measures are introduced to describe the load
disaggregation problem and to make the load disaggregation results comparable
in a fair way. A fair comparison between different NILM algorithms is a difficult
task due to the fact that recent approaches are highly dependent on different
conditions and features such as:

• sampling frequency of the measured power draw,

• number of observed appliances,

• appliance types (e.g., on/off appliances, multi-state appliances),

• the data preprocessing applied to the household power draw (the power
draw feed into the NILM algorithm is usually filtered and preprocessed
before evaluations) and

• set of used appliance features (e.g., steady state electrical characteristics,
transient behavior, etc.).

A comparison between algorithms is possible as for example how many feature
are used or on which sampling frequency is the algorithm able to work. But an
algorithm comparison lacks of the ability to compare and to evaluate the results
of the load disaggregator even if the same dataset and environment settings
such as sampling frequency and number/types of appliances were used. Accord-
ingly, commonly applied data pre-preprocessing stages such as noise-filtering,
filling of missing data or resampling methods are highly affecting the NILM
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problem and the ability to compare different load disaggregation results. A
fair comparison is only possible if exactly the same data input is used by the
load disaggregator. The data input consists of timer series data and of the
feature set used by the load disaggregator. There is the need for a common
quantitative metric for NILM which is algorithm independent and considers
data assumptions, data pre-processing as well as the used feature set. Thus,
the problem itself has to be made comparable which is created by the used
appliances in a house, their appliance characteristics and their usage over time.
A possibility to make the load disaggregation problem comparable is to describe
the complexity of the problem in which the problem can be seen as a simple time
series. To describe the complexity of time series different complexity measure
were proposed such as entropy-based complexity measures [Pin91, Ric00, RO02],
used for different applications such as DNA sequences [Mon14b, Cos05] or EEG
signals [Rez98, J04, Gao12]. The problem of load disaggregation is hard due
to the high variety of different appliances, their different ways to consume
energy and their high time-variant behavior introduced by the appliance user.
These facts are uncommon for example EEG based time series. It is necessary
to involve appliances and their characteristics as well as the time dependent
behavior into the evaluation of a possible complexity measure.
To the best of our knowledge, this is the first approach summarizing the disag-
gregation problem as a complexity value created by statistical characteristics of
the appliance set and the time series behavior. A similar approach concentrating
on the fundamental limits of NILM was introduced in [Don14]. In this paper,
the authors derived an upper bound on the probability to distinguish scenarios
for an arbitrary NILM algorithm to guarantee on when NILM is impossible to
be solved. The work in [Don14] differs from our approach as we try to make
the problem of superimposed loads comparable between different used NILM
algorithms. In addition, Pöchacker in [Pöc15] presents a measure based on the
proficiency of power values for the load disaggregation problem which can be
interpreted as a complexity measure for load disaggregation. He models the
problem as an information theoretical problem in which the power states are
interpreted as the accessible channel for the transmission of a set of possible
device states. With this assumptions, he computed the entropy, the mutual
information and proficiency of synthetically generated and real-world based
power values. The work in [Pöc15] is different from to the presented approach
since we are considering model and measurement uncertainties and trying to
reflect real world effects and challenges to be handled by a load disaggregator.
In one of our complexity measures we are also considering the appliance usage
behavior. However, the two proposed disaggregation complexity merits are
evaluated on real-world data and compared to the disaggregation result of a
state-of-the-art NILM algorithm. Parts of this chapter have been published and
presented in [Ega15d].
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The remainder of this chapter is organized as follows: In Section 4.1 the
difficulties for disaggregation of power draws are identified and factors influencing
the disaggregation complexity are identified. In Section 4.2, public known load
disaggregation datasets are presented with their different parameters as for
example monitored houses and electric quantities. Three different real-world
datasets are chosen for further evaluation. With the chosen consumption
datasets and the knowledge of complexity influencing factors, an appliance set
complexity and time series complexity is defined in Section 4.3. In Section 4.4 the
evaluation settings are specified and the following Section 4.5 is presenting four
case studies to review the complexity measures according to their suitability and
meaningfulness to describe load disaggregation problems. Section 4.6 discusses
the presented results and Section 4.7 summarizes the chapter.

4.1 The Complexity of Load Disaggregation

The problem of load disaggregation is to break down the household power draw
P (t) to its power consumption components pn(t) and can be described as:

P (t) = p1(t) + p2(t) + ⋅ ⋅ ⋅ + pN(t) for t ∈ {1, T} (4.1)

where N represents the number of used appliances. Each power profile pN
has its own behavior to consume energy determined by the appliance power
states (e.g.: on/off appliance, multi-state appliance) and the appliance usage
(e.g.: fridge with periodic usage, TV with common usage times) over time. The
task of a load disaggregator is to find the best combination of known appliance
power profiles to minimize the error between the estimated power signal and the
estimated composition of known appliance profiles. We define the complexity of
load disaggregation as the hardness to disaggregate appliance profiles according
to their appliance characteristics and the way of overlapping power profiles
over time. Accordingly, the problem itself should be defined by a complexity
measure to make the problem with its appliance characteristics and device
usage comparable. There are several facts influencing the complexity of the
load disaggregation problem (Figure 4.1) which are listed in the following:

1. The complexity of aggregated loads increases with an increased number
of appliances due to higher probability of ambiguous power draws.

2. The higher the switching frequency (like in the case of periodic performing
appliances such as a fridge), the more complex is a device set for a load
disaggregation algorithm. This is because the probability of overlapping
appliances in operation increases.
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3. Appliances with multiple operation states (i.e., washing machine, dish-
washer, etc.) make a device set more complex for a load disaggregation
algorithm.

4. The higher the similarity between appliance features, the more complex
is the problem. Appliance features are for example power state values or
consumption shapes.

5. Measurement noise, unknown or not considered appliances and imperfect
appliance model description interfere with the household power draw and
increase the complexity.

3 appliances 

stove iron 

5 states 

unknown 

Aggregated power draw Periodic power profiles Multi-state appliance 

Similar power profiles Unknown appliances Noisy power draw 

Figure 4.1: Overview of different scenarios and characteristics of aggregate
power draws increasing the complexity of a load disaggregation problem

The aim is now to define a complexity measure describing the load disaggregation
problem by a comparable quantity without taking the used load disaggregator
into account.

The complexity measures should fullfill the following requirements:

1. Describe the load disaggregation problem and should not be dependent
on the load disaggregation approach.

2. Include appliance descriptions as number of states and the similarities
between appliances and states.

3. Reflect model and measurement uncertainties.
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4 NILM Complexity 4.2 Measurement Datasets

4. Reflect the appliance usage and those influences on the problem complexity.

5. Easy and understandable.

In this chapter, we are introducing two complexity measures fullfilling these
requirements considering certain problem definitions. These problem definitions
are specified by the usable appliance features (steady state features e.g., active
power) and the usable appliance type (on/off and multi-state modelled appli-
ances). These assumptions are valid for the whole chapter. Finally, we want also
to clarify that the presented approaches are working only for the stated problem
definitions. The approaches are not aiming to introduce a general complexity
measure working for all problem definitions used by any load disaggregation
approach.

4.2 Measurement Datasets

In order to enable research on load disaggregation, public available real-world
datasets are necessary. Thus, in recent years several datasets were monitored and
finally published to make it available to the public. In Table 4.1 a breakdown
of existing datasets is provided. The datasets are categorized according to
their location, their duration of the measurement campaign, the number of
houses, the monitored features and the used sampling frequency. The monitored
features are electric quantities such as active power (P), reactive power (Q),
apparent power (S), energy (E), frequency (f), phase angle (φ) and current (I).
Corresponding to the presented attributes, the sampling frequency and the set
of electric features are the main classification attributes between the datasets.
A dataset can be chosen and evaluated dependent on the load disaggregation
approach and corresponding application.

To test the disaggregation complexity metric on different test cases we
performed our complexity study on three different datasets. We have chosen
the datasets according to electric features used (active power), to the provided
measurement resolution (1Hz), to the number of monitored houses (at least 3)
and to the number and type of measured appliances (common used ones such
as fridge and at least 6 different appliance types). The first choice is the open
available REDD dataset [Kol11]. We have chosen three different houses from this
dataset where 6 appliances were selected according to characteristics to affect
the household power demand in a significant way [Car13]. Furthermore, we
used the open dataset GREEND [Mon14a], which documents an appliance level
measurement campaign in Austria and Italy. As for the REDD dataset we have
chosen 3 houses with 6 different appliances as representative for our evaluation.
The ECO-Dataset [Bec14] was also used monitoring electricity consumption and
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occupancy in 9 Swiss houses. 3 houses with 6 different appliances were selected.
For our evaluation we have used the whole observation time for the REDD
dataset and two week for the GREEND and ECO-dataset. These assumptions
are valid through the whole chapter if not mentioned in a different way. In
Table 4.2 the appliances for each house and dataset are listed.

4.3 Proposed Approaches

We follow the idea that each possible power value produced by aggregated
appliance power states is a combination out of all possible power states of
appliances. The task for the load disaggregator is to find the best matching
combination of power states with the measured power values. The main idea
is to relate an observed power value to all possible power state combinations
under the influence of measurement noise and imperfect appliance modelling.

4.3.1 Appliance Set Complexity

One of the major factors influencing the complexity of aggregated power profiles,
is the set of possible power values. The more complex appliances are used
(e.g., having several operation states with different power consumptions), the
more complex is the problem to disaggregate the power profiles. In general, the
appliance set is composed by N different appliances. With the knowledge of the
appliance set and power demands of each appliance, the first step is to compute
the number of possible aggregated power values M . In case of only two state
devices 2N combinations are possible. In general, there are

M = 2N23N3 ⋅ ⋅ ⋅ =
Zmax

∏
Z=2

ZNZ (4.2)

different power values possible. N2 is the number of appliances with two states,
N3 with three states and so on. For the calculation of all possible aggregated
power values Pi, repetitions of the same value are possible for instance if a
water kettle and a coffee machine consume the same power. Exceptions for this
fact are the 0W power state (all devices are off) and the all-on-state PM (all
appliances are on with their highest possible power consumption) which is the
highest possible power value. The vector Π is the set of all possible (aggregated)
power values Pi for a set of appliances, where i is defined as i ∈ [1,M].

In its simplest form a NILM device observes a power value and compares it
to all possible values Pi given by the device set. As long as there is one single
matching power value in the set the task is solved straight forward. The problem
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is harder if i) the searched power value is not in the set of power states at all and
if ii) two or multiple power values are matching. Case i) we reason that it should
contain something like a multiplicity or occupation number of the possible
power values to reflect multiple occurrence. The case ii) does not occur in ideal
NILM problems. But in reality it is likely that a measured power value does not
match exactly to any of the M aggregated power values of Π. The power values
are influenced by noisy measurements and imperfect appliance models. We
propose to represent the possible power values by a distribution function instead
of a single value. The task is to compare M different distribution functions
equivalent to the matching behavior of two or more single power values. This
can be achieved by evaluating the similarity of two distributions by overlapping
coefficient defined as:

OVL(f1, f2) = ∫
x

min(f1(x), f2(x))dx. (4.3)

It gives the intersection area of the two distribution curves f1 and f2 as stated
in [Inm89]. For a load disaggregation complexity measure C we propose to
estimate the similarity of one power value distribution to all the other possible
aggregated power valued distributions. The possible power values are expected
to be between 0 and PM . By use of the overlapping coefficient the disaggregation
complexity measure for the power state Pk is defined as:

Ck =
M

∑
j=1

OVL(fPk
, fPj

)

=
M

∑
j=1
∫

PM

0
min(fPk

(p), fPj
(p))dp .

(4.4)

Ck is the disaggregation complexity of the power value Pk within the set of M
power state combinations. The parameter k determines the chosen reference
power state combination, where k ∈ [1,M]. In case the exact distribution of
the power values are not know it is reasonable to assume a normal-distributed
Probability Density Function (PDF) N(µ,σ). The mean value µ = Pk represents
the observed power value and a variance σ expresses the measurement and
model uncertainties. To evaluate the complexity of an appliance set, it is now
possible to apply the introduced disaggregation complexity for each possible
combined power value. This provides an understanding of which power values
and appliance state combinations are more complex than others. Figure 4.2
sketches an example how to estimate the disaggregation complexity. For a given
set of three on-off devices with {10,20,35}W we estimate the complexity for
the power value Pk = 30. This represents the case in which device one and two
are turned on. The set has M = 8 possible power values. Each power state
is represented by the same normal distributed PDF. The final disaggregation
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10 20 30 35 45 55 65 Aggregated 
power values 

Probability 
1 

σ 

0 

A1 A2 

A3 

Figure 4.2: A sketch of the different PDFs for each power value produced by
the combination of all available power states of an appliance set. The appliance
set consists of three on-off appliances with demands of 10, 20 and 35W .

complexity value is then the sum of all overlapping areas, such as A1, A2 and
A3 shown in Figure 4.2. The introduced disaggregation complexity C can be
interpreted as a similarity factor of power states in the appliance set.

Accordingly, a disaggregation complexity C of 1 means that at least one
solution or appliance state is equal to the wanted power value. But it can
also mean that two power value distributions match with similarity 0.5. The
disaggregation complexity C = 2 means that in the case two appliances have
the same power demand. Exceptions are the all-off power state (0W) and the
maximum power demand PM . Through the limits of the complexity computation
of [0, PM] these states show a value of C = 0.5.

Moreover, C depends on the chosen variance σ of the defined uncertainty
distribution function. The higher the value of σ, the higher is the probability
of intersections between power values. This means the higher σ, the higher is
the appliance set complexity. In addition, σ reflects modelling errors and noise
influences on the used feature set. The higher σ, the more modelling errors
occurred and the higher were the noise effects on the feature set.

In summary, a whole appliance set is characterized by its power states
complexity spectrum that shows the complexity value for each of the aggregated
power state values. The power states complexity spectrum shows at which
regions confusions of states and wrong appliance detections are more likely due
to similarity and uncertainty effects.
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4.3.2 Time Series Complexity of Aggregated Power Pro-
files

The introduced disaggregation complexity C considers the appliance set and
its characteristics but does not refer to a specific aggregated power profile and
accordingly, the usage of different appliances. We introduce the time series
disaggregation complexity Ctotal which is a weighted average of the complexities
of the power values within a time series. It considers the appliance set implicitly
through the disaggregation complexity. The usage of the different appliances is
reflected by the power values in the profile. We define the time series complexity
of an aggregated power draw as:

Ctotal =
1

T

T

∑
t=1
Ct =

1

T

T

∑
t=1

M

∑
k=1

OVL(fPt , fPk
) , (4.5)

where T represents the number of observed power samples. The complexity Ctotal
describes the averaged complexity of observed power values within all possible
appliance state combinations Π for the whole observation time. Calculation
of Ctotal requires knowledge of the respective appliance set, i.e., their number
of states, the power values and their distribution (or reasonable assumptions
about it). The time-series complexity provides feedback at which point in time
a complex power state combination based on the observed power value and the
possible power state combinations Π is occurring.

4.4 Evaluation Settings

To be able to evaluate the proposed complexity measures we defined the evalua-
tion settings in the following sections including how to identify appliance power
states and the used load disaggregation approach used for evaluation.

4.4.1 Identification of Appliance Power States

To be able to compute the two complexity measures, the set of occurred power
states is necessary. If metadata provides this information, the data of power
states could be used, but for most cases and datasets this information is either not
provided or not in the desired extent. Accordingly, a straightforward approach
would be to use expert knowledge to identify the appliance states and their power
demand. But this process is time consuming and erroneous. An automatic
state detection algorithm is presented, based on the approach published in
[Ega15b] and also discussed in Section 5.2.2. The detection approach can
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be applied on submetered measurement data as well as on aggregated power
measurements. For both scenarios different outputs are produced in which the
submetered measurements can produce multi-state power states of appliances.
Similarities between appliances and their power states are possible. In contrast,
the aggregated power measurement data is producing a set of power states
without any information of appliances and their number of states. It is detecting
different power states and not different appliances. The algorithm tries to find an
unambiguous set of power states. However, we want to clarify that the use of this
detection approach is not necessary for the calculation of the complexity values.
The complexity values can be applied to any detection approach providing a
set of appliances power states in which the appliances are described as on/off
or multi-state appliances.
The proposed detection approach is applied to each house and dataset chosen as
described in Section 4.2. The results are listed in Table 4.2. The parameters of
the algorithm are set as in [Ega15b] which are a time window of 30 s for the used
median filter and a threshold value of 25W to detect rising and falling edges.
Changing the parameters would cause different results of appliance states. For
example using a larger time window would not consider very short appliance
usages.
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4 NILM Complexity 4.5 Case Study

4.4.2 Load Disaggregation Algorithms

The proposed complexity measures should describe the complexity of aggregated
power loads. To get an idea of how meaningful the proposed complexity
approaches are, the results of the complexity measures are compared to the
results of an appropriate and suitable load disaggregation approach. This
comparison should give a quantitative feedback if the complexity value is
meaningful according to the used load disaggregation approach. We claim
that the load disaggregation approach needs to have the same inputs as the
complexity measures to be able to provide meaningful results.
We used the proposed load disaggregation approach from [Ega15a] and also
discussed in Section 5.2.3 based on PF. The appliance model includes on the
one hand the approximated power demand and on the other hand the general
appliance structure, such as how many states a device has. The PF-based
approach is suitable for our evaluation due to the fact that the algorithm can
handle a set of appliances modelled as on/off or multi-state appliances and is
performing load disaggregation based on a set of power states and the aggregated
power draw. For the evaluation the PF is parametrized as in [Ega15a] in which
the number of used particles, as most important parameter, is set to 1000
particles.

4.5 Case Study

This section presents four different case studies for the evaluation of the proposed
complexity measure such as a case study i) on the appliance set complexity,
ii) on the time series complexity, iii) on the influence of varying measurement
and model uncertainties and iv) on the relation between a load disaggregation
approach and the proposed complexity measures.

4.5.1 Appliance Set Complexity for Different Datasets
and Different Sets of Power States

As described in the previous sections, the appliance set complexity is aiming
to describe the complexity of the used appliance set without considering the
appliance usage over time. The most relevant parameter are the used power
values for each appliance power state. These power states are identified using
the algorithm presented in Section 4.4 and leads to the results for aggregated
and submetered measurements presented in Table 4.2.

As input for the complexity computation a vector of all possible power
state combinations of the appliance set of Table 4.2 is used. The results
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4.5 Case Study 4 NILM Complexity

Appliance Set Com. Time Series Com.

Dataset H.

submetered aggregated submetered aggregated

max mean max mean max mean max mean

REDD  1 16.91 7.88 2.28 1.48 13.79 1.04 1.62 0.50

REDD ∎ 2 6.170 2.62 2.32 1.33 5.39 0.54 2.32 0.11

REDD ⧫ 3 21.39 8.69 1.98 1.32 17.54 1.07 1.98 0.35

ECO  1 6.65 2.88 2.67 1.36 3.71 0.95 2.62 0.15

ECO ∎ 2 12.06 4.75 1.44 1.04 11.99 2.86 1.11 0.19

ECO ⧫ 3 16.62 6.53 1.59 1.15 14.77 4.91 1.57 0.41

GREEND  1 18.20 7.17 2.01 1.19 7.77 0.89 1.06 0.12

GREEND ∎ 2 4.46 2.18 1.36 1.07 4.305 0.91 1.35 0.50

GREEND ⧫ 3 48.36 24.43 1.87 1.18 45.01 3.67 1.81 0.04

Table 4.3: List of mean and maximum of the appliance set complexity and the
time series complexity for each house and dataset

are presented in Table 4.3 using the mean and the maximum value of the
appliance complexity.The complexity values for submetered data are higher and
more complex than the aggregated power readings. As reason we claim that
similarities between appliances are getting lost in the case of aggregated loads
due to the inability to distinguish between appliances.

With aggregated power readings it is only possible to distinguish between
different power states. This also leads to the fact that the problem complexity for
the same house of a dataset differs between appliance sets created by aggregated
or submetered power readings. This strengthens the need for a complexity
measure due to different preprocessing stages of power data. We also provide
Figure 4.3 presenting the appliance set complexity for each dataset over all
possible power state combinations and is based on the appliance states produced
by the submetered power readings. The plot shows for each possible power
state combination the appliance set complexity. The color white means that
the appliance set complexity is zero because this power value is not producible
by a combination of saved power states for a certain dataset and house. The
appliance set complexity starts from green (low complexity), blue (medium
complexity) and ends at red (high complexity). The colors are normalized
according to the dataset with the maximum occurred appliance set complexity.
Figure 4.3 shows which dataset and house is more complex according to the
used power states presented in Table 4.2. For example, house 2 of the GREEND
dataset has a very low appliance set complexity while house 3 of the GREEND
dataset has a very high and tight appliance set complexity.
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Figure 4.3: Color map of the appliance set complexity for 3 houses of the
REDD, ECO, GREEND dataset over possible power combinations of all houses
and datasets

4.5.2 Time Series Complexity for Different Datasets and
Different Sets of Power States

The appliance set complexity gives feedback of the problem complexity of the
used appliances by comparing their power states and appliance structures. For
the load disaggregation problem another important factor is the influence of
the appliance usage over time. This considers how and when appliances are
operated. In this sense appliances could be operated for example user driven
(e.g., coffee machine, TV) or periodically activated (e.g., fridge). The proposed
time series complexity considers this circumstances in its computation. For the
evaluation of this complexity measure the time series of all houses and datasets
defined in Section 4.2 for an observation window of half day are considered. The
input for the complexity computation are the measurement samples which are
combinations of possible power states affected by noise in which the appliance set
complexity considers power state combination without noise as input. Appliance
states are based on aggregated and submetered power data from Table 4.2.
In Table 4.3 the mean and the maximum of the time series complexity for
all houses and datasets. The time series complexity is highly affected by the
appliance usage. In this respect, effects on the appliance usage could be a
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Figure 4.4: Time snippet of the power readings for REDD house 2 with the
time series complexity per sample

high number of overlapping appliances and the unfavourable combination of
appliances in time. Moreover, also the measurement error of the observed power
value is highly effecting the time-series complexity. The higher this error, the
more probable is an increased problem complexity. We claim that even complex
appliance sets as the house 3 of the GREEND dataset can have a low time
series complexity due their appliance usage over time. Thus, the appliance set
complexity and the time series complexity do not correlate to each other. For
example, a high appliance set complexity can lead to a low or a high time series
complexity. Moreover, an overlapping behavior of appliances and their power
states results in an increased and high complexity value while high power values
do not necessarily results in a high complexity. A time snippet of a time series
of house 2 of the REDD dataset with corresponding complexity values for each
measurement sample are presented in Figure 4.4. Over time the complexity is
highly fluctuating according to the measured power value. In addition, we want
to clarify that even small power values can be very complex to be disaggregated
and also high power values could be of low complexity which strengthens the
need of a complexity measure reflecting the possible power state combinations
as well as the appliance usage over time.
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4 NILM Complexity 4.5 Case Study

4.5.3 Variation of Model and Measurement Uncertain-
ties

An important aspect to be included and represented by the complexity measures
are uncertainty effects introduced by model and measurement errors. Model
errors represent erroneous power state identifications as well as the normal power
variation of appliance power states. Measurement uncertainties are introduced
by erroneous measurements in the monitoring chain. As described in Section 4.3
the appliance set as well as the time series complexity consider this by using the
value σ. Thus, the aim of this case study is to vary the uncertainty of models
and measurements by this value σ and to evaluate the effect on the complexity
values. The value σ is diversified by σ ∈ {1,5,10,50}W . The values should
represent small measurement errors (e.g., 1 to 10W ) and model definition errors
of 50W . It is assumed that all used appliances and their resulting power state
combinations suffer from the same model and measurement uncertainties. We
considered the appliance set and the time series complexity for our evaluations.
Results are presented in Table 4.4. The higher the uncertainty and the error for
the model description and the measurement environment are, the more complex
is the problem. It is very probable that power states are similar to each other and
cannot be considered as significant disaggregation features. The measurement
and model identification stages have to be accurate to achieve sufficient and
suitable appliance state dissimilarities. A high power state diversity is needed to
lower the load disaggregation complexity and simplifies the load disaggregation
problem in general.

4.5.4 Load Disaggregation of Complexity Marked Power
Readings

In this case study the results of the complexity measures are compared with the
results of a NILM approach on the same power data. The aim is not to evaluate
the used disaggregation approach, but to give a feedback about the suitability
and meaningfulness of the proposed complexity measures. As described in
Section 4.4 we used the load disaggregation algorithm from [Ega15a] which is
able to handle on/off and multi-state appliances. We used the appliance set
and models identified by the submetered measurements from Table 4.5.

We assume the availability of ground truth data for the evaluation as reason
to use the submetered data and not the aggregated power readings. The
appliance set detected in Table 4.5 compared to the listed ones in Table 4.2
are different because the appliance state identification algorithm from Section
4.4 was considering only the most common appliance power states. We defined
power states as most common if a detected power state occurred as often as
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4.5 Case Study 4 NILM Complexity

House σ = 1 σ = 5 σ = 10 σ = 50

Appliance Set Complexity

REDD 1 2.21/7.67 7.88/16.90 15.20/22.94 74.30/111,7

REDD 2 1.34/3.11 2.62/6.17 4.05/8.25 15.35/21.86

REDD 3 2.65/9.87 8.69/21.39 16.31/32.36 74.77/105.15

ECO 1 1.38/4.41 2.88/6.65 4.79/9.97 21.87/42.19

ECO 2 1.97/7.02 4.75/12.06 8.42/17.44 38.02/64.75

ECO 3 2.14/9.01 6.53/16.62 12.63/26.11 61.17/106.84

GREEND 1 2.22/9.91 7.17/18.20 13.60/30.64 65.78/124.06

GREEND 2 1.30/2.43 2.17/4.46 3.19/6.19 10.72/17.92

GREEND 3 5.57/17.84 24.43/48.36 47.98/83.19 237.48/381.62

Time Series Complexity

REDD 1 0.11/2 0.41/4.85 0.69/7.89 3.55/24.1

REDD 2 0.01/1 0.06/1.13 0.27/1.74 1.38/3.79

REDD 3 0.08/3.2 0.42/4.63 0.82/6.11 3.51/15.96

ECO 1 0.2/1.96 0.84/2.59 1.58/3.42 6.5/9.75

ECO 2 0.33/2.03 1.13/3.92 1.79/7.12 8.1/31.41

ECO 3 0.19/2.98 1.02/6.37 2.17/9.44 10.29/29.69

GREEND 1 0.23/2.15 1.1/5.15 2.27/7.13 9.64/21.31

GREEND 2 0.17/2.98 0.86/4.63 1.14/6.71 4.95/18.25

GREEND 3 0.05/1.97 0.55/3.74 1.16/5.06 3.98/12.6

Table 4.4: List of mean and maximum of the time series complexity
for each house and dataset for a varying set of σ

15% of the maximum occurred power state. We used power readings of a whole
day to calculate the time-series complexity. The load disaggregation algorithm
is evaluated according to the real and estimated energy per kWh on appliance
level and to the aggregated power readings. The results for each house and
dataset for all used appliances are shown in Table 4.6. Less complex time series
like in REDD house 2 are easier to disaggregate than more complex time series
as in ECO house 2. A lower complexity is in general easier to disaggregate as
a more complex time series. Similar power states as for example in house 1
and 2 of the ECO dataset are highly affecting the load disaggregation result.
In the case of similar power states the algorithm is not able to distinguish
between appliances with similar power states supporting the need of a common
complexity measure for load disaggregation. By using a different power state
identification setting also the appliance set complexity and the time-series
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4 NILM Complexity 4.6 Discussion

Dataset Appliance States

REDD 1 [1690 2455], [190] [210 410 880 1110], [60 1533], [260 710
1440] [2712]

REDD 2 [770], [145], [410], [1875], [1050], [160]

REDD 3 [120], [210] [2255], [130 1740], [960 1290 1610], [360 900]

ECO 1 [40], [780], [50 1205], [1795], [80], [90]

ECO 2 [120 2060 2170], [70], [55 178], [50], [1845], [160]

ECO 3 [100], [55 1085 1520], [130], [100], [120], [1330 1567]

GREEND 1 [50 1270], [55 1840], [50 140], [40 1900], [1790], [1220]

GREEND 2 [80], [80 1730], [850], [90 160 1910], [1580], [60]

GREEND 3 [60], [72 2020], [160 2415], [70], [1230], [1030]

Table 4.5: Appliance set used by the load disaggregation approach.

complexity compared to the previous case studies become different. This also
strengthens our assumption to have a complexity measure handling the set of
appliance power states independent from the used load disaggregation algorithm.

4.6 Discussion

In the previous section different case studies were presented to evaluated use-
fulness of the proposed complexity measures. For example the appliance set
complexity is highly dependent on the used appliance set. The number of
devices states and similar states between appliances are strongly affecting the
load disaggregation complexity. The complexity is higher for more complex
appliance sets and is not dependent on the used house or dataset. Thus, we
claim that the preprocessing stage has an important effect on the problem
complexity and accordingly also on the result of the used load disaggregation
process. For example changing the parameter of the appliance state detection
phase would cause different appliance states and accordingly, the complexity of
the problem. This fact is also valid for the time-series complexity. By using an
appliance dataset with complex appliances and structures also the time-series
complexity is affected strongly for the same house of a dataset. Moreover, the
time series complexity is highly affected by the appliance usage. We claim
that even complex appliance sets as the house 3 of the GREEND dataset can
have a low time series complexity due their appliance usage over time. Thus,
the appliance set complexity and the time series complexity does not have
necessarily the same meaning. A high appliance set complexity can lead to a
low or a high time series complexity.
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4 NILM Complexity 4.7 Summary

In addition, the presented case studies showed that the complexity measure
and the load disaggregation problem is highly affected by the chosen variance σ
representing model and measurement uncertainties. Imperfect appliance models
and faulty power measurements lead to an increased problem complexity which
lead to a higher degree of similarities and characteristic features disappear.

We also showed that the proposed complexity measures can classify the
complexity of a load disaggregation problem but does not correlate to the used
load disaggregation approach. The result of the load disaggregation approach
cannot be estimated by the presented complexity measures. The complexity
measures aims to describe and to make the problem defined by appliance
modelling and data preprocessing comparable. The introduced measures should
solve the inability to compare different load disaggregation approaches using
different data sets and data setting. By using the complexity measure different
problems can be assessed and accordingly, also the hardness to disaggregate
power profiles.

4.7 Summary

This chapter defined two complexity measures for the problem of load disaggre-
gation which deals with the task to break down the aggregated power draw of
appliance to the appliance components. Appliance characteristics with smart
algorithms are used to solve this task. One important aspect is the distinction
between the disaggregation approach itself and the problem of aggregated power
profiles. Beside clear performance measures for NILM algorithms it needs a clear
definition to specify the hardness or complexity of a specific load disaggregation
problem. This makes a fair comparison of different NILM approaches according
to the used load disaggregation problem possible. To overcome the lack of mea-
sures/metrics to compare load disaggregation problems we introduced two novel
complexity measures to assess the complexity of a load disaggregation problem
based on the used appliance sets. With the proposed complexity measures
the used appliance sets and the aggregated power readings are evaluated for
their complexity. The two complexity measures include information such as the
appliance power states for on/off and multi-state appliances and uncertainties
created by appliance modeling errors and erroneous power measurements. The
complexity measures are evaluated on real-world datasets and quantitatively
compared with the results of a state-of-the-art NILM approach. Our evalua-
tions show that our disaggregation complexity measure is able to assess the
hardness of an appliance dataset as well as of specific time series for a NILM
algorithm. We want to emphasize that the presented complexities are relative
and not absolute measures for the problem complexity. Thus, knowing the
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disaggregation complexity is not sufficient to determine the performance of the
load disaggregator. The presented measure gives meaningful results for load
disaggregation problems with one feature such as the active power representing
each power state of an appliance. The introduced complexity measures are thus
a novel way to make NILM problems comparable.
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CHAPTER

5
Unsupervised Load Disag-
gregation Approach

”You can have data without information, but you cannot have information
without data”

– Daniel Keys Moran

Supervised load disaggregation algorithms require previous knowledge about
the devices employed in the system as labelled training data. This is in most cases
a crucial problem for the deployment as well as for costs of an load disaggregation
system. To overcome the need of labelled appliance data and of learning phases,
this chapter introduces a novel unsupervised load disaggregation approach. The
unsupervised load disaggregation approach aims to minimize the amount of a
priori information without a deduction of the information gain produced by
load disaggregation. Our proposed unsupervised load disaggregation approach
combines the following approach characteristics:

• The number of appliances and their model description is learned without
any a priori knowledge. The needed information will be learned in
operation and will be improved over time.

• The approach is of low computational complexity running on embedded
hardware with restricted resources.

• The classification process works online on each measurement sample to
provide a fast feedback usable e.g. to detect and to react on faulty
appliances.

Accordingly, the introduced load disaggregation approach identifies device
operations based on the characteristic power changes when devices are switched
on/off or switched to a different power state. Considering that power states
of devices are distinguishable, the proposed algorithm does not need a priori
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information of the system. It autonomously adapts to new and updates devices.
The algorithm can be used online and is suitable for operation on low-cost
embedded system hardware, for example as part of an energy management
system.

The presented approach constitutes an important step towards an auto-
matic disaggregation of electrical loads. The approach is especially suitable
for household appliances, since these environments feature typically different
power draws out of a device pool that is also subject to change over a larger
timescale by acquisition of new devices. By presenting a working approach for
automatizing the detection of devices without supervision, i.e., without the
need for querying the user every time the device pool has changed, this work
lays the ground for a broad application of load disaggregation.

The remainder of this chapter is organized as follows: in Section 5.1 back-
ground of the used appliance/ household modelling and used state estimation
is provided. Section 5.2 concentrates on the proposed approach and their pro-
cessing steps such as i) feature detection, ii) state clustering and appliance
modelling, iii) state estimation and appliance classification and iv) appliance
database update. In Section 5.3 the evaluation settings are presented and
Section 5.4 deals with case studies to evaluate the proposed approach. The
discussed case studies are on i) synthetics data evaluations, ii) real-world data
evaluations, iii) transition matrix dependency, iv) appliance model detection, v)
whole NILM framework and vi) the computational complexity. Finally, Section
5.5 discussed the presented results and Section 5.6 summarizes the chapter.
Parts of this chapter are based on the published works in [Ega13a], [Ega15a]
and [Ega15b].

5.1 Estimation and Modelling Approach

The proposed NILM approach is based on probabilistic graphical models (e.g.,
HMM) and on Bayesian state estimation (e.g., PF). We provide in the following
sections an overview of the used techniques and knowledge used in this chapter.

5.1.1 Household and Appliance model

The total power load of a household is the aggregated sum of appliance power
profiles, where each appliance is modelled by a Hidden Markov Model (HMM)
[Rab89] and the total power consumption is modelled by a Factorial Hidden
Markov Model (FHMM). An HMM is a probabilistic graphical model describing
time series as a Markov model in which the states are not directly observable.
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Figure 5.1: Sketch of the appliance models for on/off and multi-state appliances,
of the FHMM model and of the power draw of the aggregated power draw of
three appliances

The states of an HMM are characterized by a probability distribution function.
States cannot be directly observed, but can be estimated from the available
measurements. The HMM model has n hidden states s = {s1, . . . sn} as well as
a transition matrix A = {ai,j ≤ i, j ≤ n} representing the state transition from
si to sj. In detail, aij = P (xt+1 = sj ∣ xt = si)), where aij > 0 and ∑nj=0 aij = 1.
The terms xt are the states observable at each time slice t, which represents the
power consumption of an appliance in a particular state. An emission matrix
B must be defined for the HMM representing symbols in their actual states.
The emission matrix of the appliance model provides all possible power values
in each appliance state. Moreover, the initial probability π = P (x1 = si) of the
HMM has to be defined.

A vector z = {z1, z2 . . . zt} is the result of the hidden states x = {x1, x2, . . . xt},
where the next state of the HMM is dependent on the HMM’s current state and is
independent of past states. This is the Markov property P (xt+1 ∣ xt, xt−1 . . . x1) =
P (xt+1 ∣ xt). In Figure 5.1, an example for a general model of an on/off appliance
model is shown. In addition, on/off devices and their description can be easily
extended to multi-state appliances providing several power states. In the case
of an multi-state appliance, the parameter matrices {π,A,B} of the HMM grow
by the number of states n. In general, the definition of the matrices A and
B is the crucial task of the appliance model design. The matrices A and B
have to be learned online or offline with or without knowledge about the HMM
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and problem environment. A distinction between supervised and unsupervised
learning methods or even semi-supervised learning methods is needed.

The household power profile can be observed as the aggregate power profile
Y = {y1, y2, . . . yt} of N different appliances. It is generated by the state sequence
of x = {x(1), x(2), . . . xN} representing the superposition of the appliance states

x(n) = {x(n)1 , x
(n)
2 . . . x

(n)
t } at each time slice. This results in a household model

based on an FHMM. An FHMM is commonly used method to model multiple
independent hidden states and to decrease the number of parameters in contrast
to using a standard HMM with a large set of operational states. The general
structure of an FHMM is presented in Figure 5.1.

5.1.2 State Estimation

In the following sections, we discuss background information on particle filtering.
We start with Bayesian estimation, explain the shortcomings of using Bayesian
estimation with non-linear problems and non-Gaussian noise.

Sequential Bayesian Estimation

According to the Bayesian approach, the state of a physical system xt at time t
can be inferred from the probability density function (PDF) of a state given all
the measurement y1∶t until time t. The sequential Bayesian estimation has two
primary steps at every time instance t:

• State prediction predicting the state as the expectation of the prediction
PDF

p (xt ∣ yt−1) = ∫ p (xt−1 ∣ yt−1)p (xt ∣ xt−1)dxt−1, (5.1)

where p (xt−1 ∣ yt−1) is the posterior PDF available from time t-1 and p (xt ∣ xt−1)
is the state transition probability given by the system process model.

• Measurement update where upon receiving the measurement, the predicted
state is computed as expectation of the posterior PDF

p (xt ∣ yt) =
p (xt ∣ yt−1)p (yt ∣ xt)

∫ p (xt ∣ yt−1)p (yt ∣ xt)dxt
, (5.2)

where the p (yt ∣ xt) is the likelihood PDF given by the measurement model of
the system. The Kalman Filter (KF) [Aru02] can be used to solve the integrals
in Eq. 5.1 and Eq. 5.2 if the system is linear with additive white Gaussian
noise. In contrast, if the physical systems are non-linear, then these integrals
are intractable. Often, non-linear state estimation methods such as PF are used
to approximate these integrals.
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Particle Filter (PF)

A PF calculates weighted particles or Monte Carlo samples to approximate the
PDFs as in Eq. 5.1 and Eq. 5.2. Particles are propagated over time to obtain
new particles and the weights, resulting in a series of PDF approximations. The
approximation of the PDF becomes more accurate with an increasing number
of samples. In many cases, the sampling of the required PDF is not possible.
In such cases, the samples drawn from a different PDF (importance PDF) are
used to approximate the required PDF. It is called importance sampling. Let
{xi0∶t,wi

t}
Np

i=1 be the set of random samples, xi0∶1, drawn form the importance
density q (x0∶t ∣ y1∶t) and their associated weights, wit, for 1 . . .Np where Np is
the number of particles. Then the required PDF can be approximated as:

p (x0∶t ∣ y1∶t) ≈
Np

∑
i=1

wi
tδ (x0∶t − xi0∶t) , (5.3)

where δ is the unit dirac function and the weights are defined as:

wi
t =

p (xi0∶t ∣ y1∶t)
q (xi0∶t ∣ y1∶t)

. (5.4)

In the case of sequential importance resampling (SIS) [Aru02], the samples and

corresponding weights {xi0∶t−1,w
i
t−1}

Np

i=1 which approximate p (x0∶t−1 ∣ y1∶t−1) are
known at time t. If the importance density for approximating p (x0∶t ∣ y1∶t) is
chosen in such a way that

q (x0∶t ∣ y1∶t) = q (xt ∣ x0∶t−1,yt) q (x0∶t−1 ∣ y1∶t−1) , (5.5)

then the new samples xi0∶t ≈ q(x0∶t∣y1∶t) can be obtained by augmenting the
existing samples xi0∶t−1 ≈ q(x0∶t−1∣y1∶t−1) with the new state xit ≈ q(xt∣x0∶t−1, y1∶t).
The corresponding weight update equation is given as:

wi
t = wi

t−1

p (yt ∣ xit)p (xit ∣ xit−1)
q (xit ∣ xi0∶t−1,yt)

. (5.6)

Now, the required PDF at time t can be approximated as:

p(x0∶t∣y1∶t) ≈
Np

∑
i=1
witδ(xt − xi0∶t). (5.7)

However, the SIS algorithm suffers from the degeneracy problem in which all
but a few particles have negligible weights. Due to the degeneracy, large compu-
tational effort is expended for updating the particles with less contribution to
the approximation of the required PDF. One solution to overcome degeneracy is
resampling. The resampling process eliminates particles with negligible weights
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by replacing them with particles with large weights {x∗i0∶t,w
∗i
t }Npi=1. Several resam-

pling techniques are proposed in [Aru02]. Then, the PDF can be approximated
as:

p (x0∶t ∣ y1∶t) ≈
Np

∑
i

w∗i
t δ (xt − x∗it ) . (5.8)

The PF algorithm is given as: At time t, {x∗it−1,w
∗i
t−1}

Np

i=1 are known. The new
samples are generated by:

xit ∼ p (xt ∣ x∗it−1) ∣
Np

i=1.

The weights are updated by:

wi
t = p (yt ∣ xit) ∣

Np

i=1.

Resampling: The particles are resampled by using the auxiliary resampling
[Aru02] as:

{x∗it ,w
∗i
t } ∣Np

i=1 = Resampling {xit,w
i
t} ∣Np

i=1.

The state estimate is given by the sample mean of the resampled particles xi∗t .

In summary, the PF estimates the posterior density of the state space based
on the observation variables and the dynamic representation of a system.

5.2 Approach

This chapter proposes a novel load disaggregation approach working unsuper-
vised with minimal amount of information. The appliances models are based on
HMMs aiming to model appliance stationary processes with continuous valued
data over discrete time. Moreover, the classification process using the HMMs
should infere the most probable appliance states online by PF considering mini-
mal computational complexity. The proposed principle is presented in Figure
5.2 and can be divided into the four steps i) feature detection, ii) state clustering
and appliance modelling, iii) state estimation and appliance classification and
iv) appliance database update:

• Feature Detection: Aims to detect significant power edges which can
be assigned to appliance switching events. Data preprocessing as signal
smoothing and denoising takes place at this processing stage.

• State Clustering and Appliance Creation: Power edges are formed
to state clusters to identify the most important states or switching events.
These states are used to create appliance models used by the load disag-
gregator.
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Figure 5.2: General computation sequence of the unsupervised load disaggrega-
tion approach including the stages state detection, appliance database update,state
clustering and state estimation and appliance classification

• State Estimation and Appliance Classification: With the appliance
models generated, appliance states should be estimated by an online load
disaggregation approach using low frequency active power readings.

• Appliance Database Update: To add, to maintain and to update
appliance models in an autonomous way, this stage is responsible to find
new power states, to improve and to update the power states of existing
appliance models.

In the following sections each processing stage is described in detail.

5.2.1 Feature Detection

One major task of the proposed load disaggregation approach is to detect and
to identify useful appliance features. According to our assumptions, we focus on
smart metering readings of active power ratings with a measurements resolution
of 1Hz due to low costs of a sensing platform and lower computation and storage
costs compared to high frequency measurements. With the aggregated power
readings we aim to extract appliance features based on appliance switching
events. In detail, we concentrate on switching on and switching off events where
all power states of an appliance are taken under consideration. The task is
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to produce abrupt edges with a significant change without losing important
appliance related information. Power transients can last several seconds in
reality which has to be considered by the proposed feature detector. Due to
the fact that measurement readings are affected by noise, the readings have
to be preprocessed to get sufficient and satisfying data. Thus, we de-noise
the power readings by median filtering with an appropriate window size of
30 samples. The window size was set to 30 samples considering that a noted
operation duration last longer than 30 seconds. The window size has to be
chosen carefully since a window chosen too wide could lead to information loss
by wiping out important edges. The filtering process is followed by a process
to sharpen edges and to produce steady states in the signal. This is necessary
to overcome both fluctuations in the readings and slow power transient from
one appliance state to another one. To produce a steady state power signal, we
detect the most significant edges by checking for rising and falling edges by:

ε(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if (P (t) − P (t +w) > (P (t) + th)
−1 if (P (t) − P (t +w) < (P (t) − th)
0 elsewhere.

The variable P (t) represents the power readings for each time instance, w
represents the used window to overcome slowly rising transients, th is the used
power threshold to detect edges in the signal and t is representing the discrete
time variable. The vector ε(t) is used as an index vector to decide which power
value should be attached to which detected power edge. With the information
of ε(t), a new power vector s(t) is generated. The initialized zero vector s(t)
is filled with the mean value of power samples between occurring edges. For
example between consecutive rising edges all samples are taken, the mean value
is calculated and the entries of s between this consecutive edges are set to the
calculated power value. The resulting power vector s(t) contains all steady
power state with sharp edges and is used by the second edge detector. The
edge detector finds edges greater or smaller than the predefined threshold th
by creating the difference pdiff = s(t) − s(t − d) and by finding positions where
pdiff > th to get a rising edge or pdiff < −th to get a falling edge. The variable d
represents the delay to calculate edges and is usually set to 1 − 3. The delay
is necessary to overcome long lasting power transition at second level. Finally,
the pool of rising and falling edges are compared to each other to find matching
edges. A falling and rising edge pair is found, if the difference between them is
lower than the threshold 2 ⋅ th. In Figure 5.3 a sketch of the proposed procedure
is presented. In summary, the feature detection stage is creating a pool of found
power edges from a de-noised, filtered and smoothed power draw. For multi-
state appliances it would be necessary to consider also the sequence of occurred
edges and a logic to map them to a new list of edge pairs (multi-state appliances
and its appliance models are not considered in the presented approach).

66



5 Unsupervised Approach 5.2 Approach

Edge Detection 

Smoothing 
List of rising edges 

32,789,1230,… 

List of falling edges 
36,605,1214,… 

List of edge pairs 
34,1224,… 

Rising edge Falling edge 

Figure 5.3: Sketch of the sequence of the edge detection procedure used by
unsupervised load disaggregation approach

5.2.2 State Clustering and Appliance Modelling

The pool of matching power edges is the basis for the next analysing process
creating appliance models based on HMMs. First, a histogram of all edge pairs
detected by the feature detector is created. The histogram is defined by an
upper and lower bound considering the maximum possible power demand of an
appliance. Thus, the created histogram counts the occurred power edges from 0
(lower bound) to 3000W (upper bound) each 5W . The partition of 5W for the
histogram is a sufficient assumption due to the fact that appliance demands
can vary of several Watts. Dependent on the application and the appliances
present in a system, the values for the upper/lower bounds and the partition
factor can be freely selected.

Next, power edges in the histogram which are occurring at least once are
combined with existing neighbouring power edges. With the set of neighbouring
power edges, the considered power value is created by calculating the mean
value of the set of adjacent power states. The identified power states are used
to create on/off appliance models by assigning them to the observation matrix
of the appliance HMM. The off state (0W ) is assigned to each appliance HMM
as first observation entry followed by the detected power demands in operation.
An appliance is set to the off state as initial operation state. In summary, the
clustering approach is detecting unique power edges and models them as single
on/off appliances.

5.2.3 State Estimation and Appliance Classification

According the previously defined problem definition, the aim of the estimator is
to use the detected appliance models (HMM) and to classify aggregated power
readings online and of low computational complexity. Our approach is based
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Figure 5.4: Sketch of the power state histogram of detected edges pairs and
the created appliances

on Particle Filter (PF) with auxiliary resampling aiming to approximate the
posterior density of the FHMM. The approach disaggregates each appliance
power demand and appliance state from the household demand, according to
the current observed consumption and the given appliance models modelled
as HMMs. The PF estimates the posterior density of the FHMM state space.
The output of the PF are power values for each appliance which are aggregated
at each point in time. The PF has the characteristic to randomly adjust the
estimated power observation for each appliance in predefined ranges. This range
is defined as 2 ⋅ √ps where ps is the saved power demand for an appliance state.
The reason for that is to estimate and to compensate appliance inaccuracy
in the appliance power consumption as well as imperfect model definitions.
Moreover, the posterior density is resetting all states every 60 seconds. As
reason we claim that the PF is in general for continuously changing signals
in which the aggregated power demand in second resolution is comparatively
sluggish. Significant power changes are commonly occurring not each second
leading to an loss of diversity by the resampling stage.

The PF itself is not providing the information in which state an appliance is
operating. It delivers power values which are given to a decision making process
to classify the appliance. The decision making process has knowledge of the
power demand of each appliance operation state. It decides accordingly in which
state each appliance is at each point in time by a simple thresholding approach.
The use of a PF as load disaggregator is beneficial for three reasons. First, PF
can handle non-linear problems presented by non-linear behaving loads such
as a driller or a dimmer. Second, it can handle non-Gaussian noise influences
resulting from uncertainty in power trends and consumption data. Third, PF
and its performance can be adjusted by the number of used particles. The more
particles the PF considers, the better is the estimated posterior density and
the estimation result. The number of particles is limited by the computational

68



5 Unsupervised Approach 5.3 Evaluation Settings

effort of the approximation process. Moreover, exact knowledge of the transition
matrix is not necessary since the PF is independently estimating the appliance
states by an appropriate number of used particles. In case of a two-state
appliance represented by a two-state transition matrix, a clear trend should be
visible which state is more probable than the other. This simplifies the appliance
learning and modelling stage in which intensive offline processing stages are
not needed. The disaggregation process is performed on each measurement
sample (each second) and considers only the current power sample for the
estimation process. It is performing online and is only restricted by the number
of considered particles. A simplified sequence of how to the PF is used for the
application to disaggregate loads is shown in Figure 5.5.

5.2.4 Appliance Database Update

As we are aiming to find appliance models which are valid for the whole uptime,
we have to consider different cases of appliances, of appliance models and
characteristics as wells as different ways of using them. For example, appliances
can be used only once a week, can be used every 15 minutes or can be exchanged
with new appliances. Moreover, the demand of an appliance can be varying
over time. The proposed approach, described in the following, should be able to
deal with these situations. The method should be able to deal with no system
information at the start and should improve its knowledge over time. As a first
step, we consider and update each saved and identified appliance model each
observation time. We try to detect each observation time all possible power
states and compare them with already detected power states. The comparison
is done by performing a distance measure by saved power states to new detected
power states. We use the absolute error between the states and evaluated
according to a threshold value defined. If the power states is not known, a new
appliance is added to the appliance database. If the power states is detected,
the old power state is replaced by the mean power state of the old power state
and the new power state. However, for the first observation time all detected
power states are used to introduce new appliance models saved.

5.3 Evaluation Settings

In the following, the evaluation settings for the simulations on synthetic data
and on a real-world dataset are described and the evaluation metrics for the
proposed approach are defined.
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Figure 5.5: Sketch of the general principle how the PF is used to infer appliance
states.

5.3.1 Settings on Synthetic Data

The first step to evaluate the proposed approach is to define controllable test
cases based on synthetic data. A list of appliances is shown in Table 5.1. They
are categorized according to their power demand ps per operation state s, their
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average run time ton and their average occurrence per day fon. The values for
ps, ton and fon are empirically identified in which the chosen values are not
necessarily reflecting real appliances and their characteristics. For the evaluation
each appliance is modelled as an HMM defined by their transition matrix A
and their observation matrix B. The transition matrix A is created by an on
and off probability in which the on probability is defined as pon = fon/T and the
off probability as poff = 1/ton. The discrete variable T represents the observed
time which is defined in our case as T = 86400. It represents an observation
time of one day in second resolution. The observation matrix is built up by
B = {0, pd}, where B = 0 belongs to the appliance off state and B = pd belongs
to the appliance on state. Multi-state appliances are defined in a similar way.
The transition matrix A is defined in a way that the on probability is chosen
equivalently for on/off appliances. The transition states from one state to the
other state are defined by ton and is the same for each transition from one state
to another state. The probability of staying in the same state is calculated by
1 minus the sum of all other transition probabilities. The observation power
demand matrix Bm is defined by the power demand values for each appliance
state.

To create the total power demand P , a set of appliances (number of appliance
is defined in advance) from Table 5.1 are chosen. The power demand of the
chosen appliances is created by their HMM definitions and finally, added up to
create the total power demand P .

5.3.2 Real-World Dataset

Beside the evaluations based on synthetic data, we also evaluated our results
on real-world measurements. A variety of different real-world dataset exists
as presented in Table 4.1. We decided to use the REDD dataset as real-world
dataset. It provides several power draws of monitored appliances and houses
over several days [Kol11] and is well-known in the research community. We used
house 1, 2, 3, where each appliance is defined by the recorded apparent power. We
choose 6 different appliances which are common in households and are affecting
the energy consumption of an household in a significant way [Car13]. The
REDD dataset offers submetered power profiles in which the devices are known
and the loads are already disaggregated. We calculated an overall power profile
based on the submetered data which was fed into the presented classification
approach from Section 5.2.3. The submetered power profiles have a varying
sampling frequency and are partially out of order which makes it necessary to
adjust the sampling frequency on an equal level using interpolation. The used
sampling frequency is one second. The used classification approach is a model
based state estimation approach using HMMs. Thus, for each appliance the

71



5.3 Evaluation Settings 5 Unsupervised Approach

transition matrix A and the observations matrix B has to be defined. In Section
5.4.2 we used the MATLAB pre-programmed HMM functions 1 to construct
the matrix A. The used appliance states are set by expert knowledge. The
observation matrix B is defined as well by expert knowledge and is composed by
the off state consuming 0W and all other detected power states by the human.
In all over Sections 5.4.3, 5.4.5 and 5.4.6 we used a predefined transition matrix
A representing a tendency of which power state is more probably than the
others. The used observation matrix is either detected by expert knowledge as
before or by the proposed appliance modelling and detection approach presented
in Section 5.4.4 and 5.2.2.

5.3.3 Evaluation Metric

The planned case studies of this chapter require different evaluation metrics. We
distinguish in following between the evaluation metrics used for i) the appliance
classification process and ii) the appliance detection process.

Appliance Classification

To evaluate the performance and the precision of the proposed load disaggre-
gation approach, we used the accuracy matrix for binary classification, the
error of the allocated energy ERR and the root mean squared error RMSE of
the estimated to the real signal. To be able to formulate the accuracy of the
classification process, the classification terms TP (number of times an appliance
is correctly detected as on), FP (number of times an appliance is wrongly
detected as on), FN (number of times an appliance is wrongly detected as off)
and TN (number of times an appliance is correctly detected as off) have to
be defined. The classification terms TP, FP, FN and TN are straightforward
for On/Off appliances. Considering multi-state appliances we remark that we
consider only the operating state if an appliance is on or off and not, if a device
is in a certain operating state. With the mentioned classification terms, the
overall classification result is calculated by combining TP, FP, FN and TN to
the accuracy metric

ACC = TP +TN

TP +TN + FP + FN
∈ [0,1], (5.9)

where ACC represents how accurate appliance states can be detected by the
proposed approach.

1hmmestimate - estimates the HMM based on emissions and states
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The error of the allocated energy is defined as:

ERR(i) =
T

∑
t=1
ŷ
(i)
t − y(i)t , (5.10)

where ŷ
(i)
t is the estimated power and y

(i)
t is the ground truth data for each

appliance at each point in discrete time T . The variable T considers the used
observation window of the classification process. The metric ERR(i) represents
the energy not correctly assigned for each appliance. Therefore,

ERR =
N

∑
i=1

ERR(i) (5.11)

represents the energy not correctly assigned in total over all used appliances N .
Finally, the RMSE is defined as:

RMSE =

√
E((Θ̂ −Θ))2

max(Θ)
, (5.12)

where Θ = ∑Ni=1 ŷ(i) represents the true total power load, Θ̂ = ∑Ni=1 y(i) represents
the estimated total power load produced by the classification approach and
max(Θ) represents the maximum power value in the total power load.

Appliance Detection

To evaluate the performance of the appliance detection, we propose a modified
accuracy according to the following definition:

ACC e =
As

Ns +Unk
. (5.13)

Ns represents the number of uniquely known power states, As describes the
true positive events as correct assignable power states detected and Unk stands
for false positive events where power states are detected but cannot be assigned
to a known power state. A power state is assigned as As if the absolute error
between the real and the detected power state is less than a predefined threshold
value.

5.4 Case Studies

This section presents six different case studies for the evaluation of the proposed
load disaggregation approach such as an case study i) on synthetic data evalua-
tion, ii) on real-world data evaluation, iii) on transition matrix dependency, iv)
on the appliance model detection, v) on the whole NILM framework and finally
iv) on the computational complexity.
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5.4.1 Synthetic Data Evaluation

This case study aims to provide an insight on the applicability of the pro-
posed classification approach to solve the load disaggregation problem based on
synthetic generated data. Thus, we define synthetically 18 typical household
appliances as described in Table 5.1 and in Section 5.3.1. We generated the
total power demand by a randomly chosen set of 12 appliances from Table 5.1.
The set is changed every day and the whole observation time is 30 days. As
evaluation metric we used the accuracy ACC defined in Section 5.3.3 feedback-
ing all right detected on and off states over all possible measurements and the
RMSE defined in Section 5.3.3. The ACC is computed on appliance level
and in total. An appliance is defined as on if their power demand exceeds
10W and off otherwise. Moreover, we varied the number of used particles
from N = {100,1000} to identify a sufficient number of particles for further
evaluations.

The results for the ACC and the RMSE are presented in Table 5.1. The
more particles are used for the classification process, the better is the overall
estimation results. Each appliance could be detected with an accuracy over 92%
for 1000 particles. The improved result is impressed more by the RMSE results
and shows that the proposed classification process is applicable for the load
disaggregation problem. However, due to the good results on synthetic data
we claim to use real data for further evaluations. Real world measurements are
influenced by varying and not modelled power states as well as unpredictable
noise which is needed for a fair evaluation of the proposed approach.
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5.4.2 Real-World Data Evaluation

Based on the promising results of the previous section, the proposed classification
process is tested on real world data. As mentioned in Section 5.3.2 we used
the REDD dataset from MIT for our evaluations. 3 houses with 6 different
appliances (see Table 5.2) are used to generate the aggregated total power
demand wherein beside on/off appliances also multi-state appliances are used
by the load disaggregator. In this table, for each appliance the used power
demands per operation state are presented. This information was used to train
appliance HMMs. In detail, the transition matrix of the HMM were trained
by a provided MATLAB function and the observation matrix was filled by the
power demands listed in Table 5.2. For this case study an observation time of
one week was used.

Beside the aim to provide a feasibility study of the proposed load disag-
gregation approach, also the PF as estimator is modified and adopted to the
problem. As mentioned in Section 5.2.3 we reset the used appliance state space
each predefined time to overcome the loss of diversity due to slowly changing
signals. We varied this time2 by treset = [1min, 1

2 h]. Moreover, we varied the
used standby threshold by pstby = [0W,5W,10W ].

House 1 - real House 1 - estimated

oven

fridge

kitchen
outlet

microwave

stove

washing
dryer

5%

43%

5%

25%

1%
22% 14%

40%

4%

24%

7%

12%

Figure 5.6: Classification results for the energy shares of REDD houses 1 by
using treset = 1min and a power variation of 0W

2s stands for seconds, h represents an hour
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House 2 - real House 2 - estimated

kitchen
outlet

stove

fridge

kitchen
outlet

stove

fridge

9%

2%

61%

5%

10%

12%
10%

3%

41%
13%

22%

11%

Figure 5.7: Classification results for the energy shares of REDD houses 2
using treset = 1min and a power variation of 0W

House 3 - real House 3 - estimated

fridge

dishwasher

washing
dryer

washing
dryer

microwave

bathroom gfi

30%

6%
18%

23%

6%

18%

36%

9% 13%

15%

7%

21%

Figure 5.8: Classification results for the energy shares of REDD houses 3
using treset = 1min and a power variation of 5W

The results are evaluated according the reached ACC on appliance level
and in total as well as to the reached RMSE and are presented in Table 5.2.
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The results for the ACC and for the RMSE are the worst using no resetting
behavior. Thus, we claim the need to have this simple rule to reset the used
state space every predefined time. This time has to be chosen carefully according
to results. If the time for resetting is chosen to big as in the case of 1/2h the
results of the classification process are getting worse. We identified a time of
1min as sufficient and suitable time to reset the appliance state space of the
PF.

Moreover, we also varied the standby power in this case study. The standby
power is the power to decide if an appliance is off or on. The table shows
slightly better results for house 1 and 2 using a standby power of 5W . For
these two houses the reset variation evaluation were computed with a standby
power of 0W . For house 3 we used already a standby power of 5W because
the performance of the classification process was decreased with a standby
power of 0W . We claim to use a low standby power of 5W or lower to be
appropriate for different households and their uncertainty situations due to
noise and measurement/modeling errors.

Finally, in Figure 5.6, 5.7 and 5.8 the energy shares for the estimated and
the ground truth data of house 1-3 are presented. The error ERR between the
estimated power and the real power is for house 1 3.7%, for house 2 3.9% and for
house 3 25.2%. The results show that some energy shares are incorrect assigned
due to similarities of the power states. House 3 has a low energy tracking
result, but a sufficient classification results. As reason for the mismatches of
the power shares we assume the erroneous appliance modelling by the expert.
The classification algorithm uses constant power states for the classification
for each power state. Also standby behaviors of appliances were not modelled
for this evaluation, which can have a considerable proportion of a household
power demand. A solution to overcome this situation and to improve the energy
tracking behavior is to model power state in predefined ranges (e.g state 1 is
valid between 105W and 120W ) or by a normal distribution function with
a desired mean and variance. Compared to other approaches as for example
[Pat12] reaching up to 90% of right assigned energy or [Kol11] reaching up to
65% of right assigned energy, the presented approach reaches comparable better
results depending on the problem case.

5.4.3 Transition Matrix Dependency

In Section 5.2.3 we claimed that the classification approach based on PF has not
the need to know the exact transition matrix. A trend such as the probability
to stay in a state is higher than to change a state should be reflected by the
transition matrix and its entries. This fact is reducing the learning phases of
appliance models and is beneficial for the computational complexity and also
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House Device Type States [W] reset variation power variation

ACC ACC

no 1 min 1/2h 0W 5W

1 oven 1660 98.4 99.2 99.8 - 99.1

fridge 8, 190, 2000 95.4 97.7 98.5 - 97.8

kitchen outlet 1080 96.3 99.7 99.3 - 99.7

microwave 5, 1550 96.2 98.4 98.0 - 98.4

stove 1430 97.9 99.4 98.7 - 99.2

washing dryer 2700 99.1 99.3 99.2 - 99.3

ACC 95.8 98.9 98.5 - 98.9

RMSE 0.115 0.033 0.051 - 0.030

2 kitchen outlet 1060 87.3 98.8 98.4 - 99.2

stove 410 73.6 99.0 96.1 - 97.9

fridge 8, 160 74.8 89.5 92.1 - 86.7

kitchen outlet 15, 780 93.5 98.5 96.9 - 99.6

dishwasher 250, 1215 66.9 88.6 91.6 - 87.8

microwave 5, 45, 1900 80.3 79.4 86.8 - 81.9

ACC 64.4 92.1 93.7 - 92.2

RMSE 0.24 0.027 0.079 - 0.0270

3 fridge 120 62.0 96.6 95.8 70.2 -

dishwasher 215, 752 44.4 98.3 93.6 70.1 -

washing dryer 2230 56.6 99.3 99.2 99.1 -

washing dryer 280, 2500 56.1 98.2 98.2 97.9 -

microwave 1760 57.7 99.6 99.6 99.4 -

bathroom gfi 1280, 1590 51.7 99.4 97.2 99.3 -

ACC 45.9 98.3 96.2 90.8 -

RMSE 0.597 0.062 0.067 0.069 -

Table 5.2: Case study results of the accuracy for the PF based classification
on the REDD dataset for house 1–3 with known appliance models

for the online capability. This case study should support our statement by
testing general appliance transition matrices. Thus, we set the transition matrix
constant to

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9 0.1
N ⋯ 0.1

N
0.1
N 0.9 ⋯ 0.1

N

⋮ ⋮ ⋱ ⋮
0.1
N

0.1
N ⋯ 0.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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for evaluation case 1, uniformly distributed (U) to

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1
1−U1
n−1 ⋯ 1−U1

n−1
1−U2
n−1 U2 ⋯ 1−U2

n−1

⋮ ⋮ ⋱ ⋮
1−Un
n−1

1−Un
n−1 ⋯ Un

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for evaluation case 2 and equal distributed by setting all matrix entries to 0.5 for
the evaluation case 3. The size of the matrix depends in the number of appliance
states n. An on/off devices has a 2x2 transition matrix, a 3-state device a 3x3
transition matrix and so on. We used real world data (see Section 5.4.2) and
an observation window of one day. We repeated the simulations of evaluation
case 2 ten times to produce different transition matrices. The results for each
test case compared to the normal case representing the appliance transition
matrix learned by MATLAB are presented in Table 5.3. The MATLAB learned
transition matrix are learned for each appliance and have in general a high state
probability to stay in the same state (greater than 0.9) and accordingly a quite
small state-change probability. Best results are achieved by using the constant
transition matrix. Worst results are obtained by the equal distributed matrix
entries and the learned transition matrix in some houses. As reason we assume
that the learning process is highly affected by the uncertainties affected by noise
or modelling errors. However, the results are strengthening our statement that
our proposed classification approach has only to follow a trend for the transition
matrix. Learning phases can be simplified and the computational complexity
can be reduced.

5.4.4 Appliance Model Detection

Up to now the appliance models were known or learned before evaluation. The
task of this case study is to test the proposed appliance detection and modelling
approach presented in 5.2. First, we used synthetic power data with a random
composition of on/off appliances from Table 5.1 for 10 days with 100 simulation
runs. This allows to verify the result with ground truth data which is not
available using real world data. Second, we used real world data to evaluate
the performance on the first 3 houses of the REDD dataset on an observation
window of 12 consecutive days.

In the case of real world data in which we have no information about the
used power states, the first task is to find common power states in the real world
measurements. We used the submetered power draws for the chosen appliances.
For each power draw we identified the most common appliance power states
consuming more than 50W and were running at least 100 s for the last 12 days.
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House Device Type case 1 case 2 case 3 normal

ACC

1 oven 99.9 99.9 99.9 99.2

fridge 99.0 98.9 99.0 97.7

kitchen Outlet 99.9 99.9 99.9 99.7

microwave 99.3 99.3 99.4 98.4

stove 99.7 99.6 99.6 99.4

washing dryer 99.9 99.9 99.9 99.3

ACC 99.62 99.52 99.56 99.0

RMSE 0.018 0.018 0.018 0.033

2 kitchen outlet 99.5 99.4 99.0 98.8

stove 98.8 98.6 99.6 99.0

fridge 95.9 92.0 60.2 89.5

kitchen outlet 99.6 99.2 98.6 98.5

dishwasher 96.3 92.3 58.4 88.6

microwave 93.3 87.3 85.9 79.4

ACC 97.3 94.8 83.6 92.3

RMSE 0.009 0.014 0.036 0.027

3 fridge 98.6 78.5 64.1 96.6

dishwasher 97.6 93.3 96.1 98.4

washing dryer 99.8 99.8 99.2 99.3

washing dryer 97.9 97.4 97.3 98.2

microwave 98.8 98.7 99.5 99.6

bathroom gfi 98.9 98.7 96.2 99.4

ACC 98.6 94.4 92.01 98.6

RMSE 0.015 0.019 0.047 0.062

Table 5.3: Case study results of the ACC for the PF based
classification on the REDD dataset for house 1-3 with vary-
ing transition matrix definition. Case 1 represents the con-
stant transition matrix, case 2 represents the uniformly
generated transition matrix, case 3 represents an equal dis-
tributed transition matrix and the normal case represent the
learned transition matrix by MATLAB

This results in a set of power values for each appliance in which power states
could be very similar to each other. According to the fact to have a unique set
of occurred power states, we combined similar power states. Power states which
are in a range of 50W are combined to a single power state by calculating the
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mean value of the set of similar power states. We used the defined metrics in
Section 5.3.3. In the case using synthetic data we calculated for each metric
value As, Unk and ACCe the mean value out of all simulations runs.

The result on synthetic data are presented in Table 5.4 representing As,
Unk, ACCe for a varying number of used appliances (N ∈ [6,9,12]). Figure
5.9 shows As and Unk for all simulation runs and used appliance numbers
(N ∈ {6,9,12})

House N = 6 N = 9 N = 12

As 5.89 8.42 10.36

Unk 0.68 1.47 1.88

ACCe 0.98 0.93 0.86

Table 5.4: Case study results for As, Unk and
ACCe for synthetic generated power draws with
a varying number of appliances (N ∈ {6,9,12})
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Figure 5.9: Case study results for As and Unk for synthetic generated power
draws for each simulation run

The results show that with an increasing number of power states the ACCe

is decreasing. The number of assignable power states is sufficient and also the
mean number of unknown and false detected power states is below 2.
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The results of the real world data based case study is presented in Table
5.5 for house 1-3 for 12 consecutive days. The detected power states from
the submetered power measurements as well as As, Unkn and the ACCe are
presented to evaluate the proposed approach.

The results for house 1 and 2 are promising and sufficient. In house 3,
an ACCe of 0.64 is reached due to not assignable power states presented by
Unkn. As sub-reason we can assume that two appliances were simultaneously
operated and the power states were not detected by the detection approach.
The range of this power state was out of consideration area. The power state
to be detected was around 4.7kW and we considered only power values up to
3kW . This explains 2 items of Unkn, but still 3 states were wrong detected and
not assignable. Finally, we claim that the presented results of the real world
data case study are varying according to used parameter set as for example the
used threshold to detected power states from the submetered data.

House power states As Unkn ACC

1 [108, 209, 272, 413, 742,
895, 1039, 1356, 1530, 1640,
2696]

11 1 0.92

2 [79 164 238 406 463 573 760
1044 1185 1646 1834]

11 1 0.92

2 [157 232 411 479 730 864
1001 1102 1287 1478 1569
1701 2231 2464]

9 5 0.64

Table 5.5: Case study results for As, Unk and ACC for real
world based power measurements (REDD House 1-3) with the
set of detected power states computed on the submetered power
measurements

5.4.5 Overall NILM framework

This case study aims to evaluate the performance of the proposed unsupervised
load disaggregation approach on the whole NILM process. Our approach
includes the four processing stages feature detection, appliance creation with
state clustering, state estimation and appliance classification and appliance
database update. In detail, we varied the observation time of event detection
and appliance update phase in a way that we run the process every sixth day
and we run the classification on each sixth days out of thirty days in total.
Thus, we computed four classification results since the first 6 days were used
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to learn the initial set of appliance states. Due to the fact that the presented
unsupervised approach provides information of on/off appliances, the initial
task of the case study is to assign power states to ”virtual” appliances (VD).
Each appliance based on ground truth data has their certain power states in
which one appliance can have more than one power state. Moreover, power
states between appliances can be similar to each other. The proposed detection
algorithm is not able to distinguish between multi-state devices and similar
power states. It is necessary to group detected power states to appliance power
states based on the ground truth appliance data. This is done by defining
”virtual” appliances combining the power states of multi-state and similar power
states to one device. For example two devices with the states {100,1000} for
device 1 and {200,1001} for device 2 are combined to one VD. Finally, the
detected power states are assigned to this VD by a difference measure between
the detected power state and states of the VD. The threshold for the difference
measure was 75W . In the case that the detected power state cannot be assigned
to any virtual device, this power state is forwarded to an ”unknown” appliance
container. In the ”unknown” device container all power states not assignable
are collected together.

Results of this case study are presented in Figure 5.10, 5.11, 5.12, 5.10
and in Table 5.6. In detail, the mentioned figures present the energy share
for each virtual appliance and unknown appliance for the ground truth and
the estimated results. The observation time was always six days, in which the
detected appliance set of the previous six days was used for classification. The
results are satisfying. In Table 5.6 the accuracy for the classification on virtual
appliance level, the assignable detected events, the number of unknown events
and the accuracy for the event detection are presented.

Because the algorithm uses a solution and evaluation approach not used by
other approaches, a direct comparison with other approaches was not possible
for this case study. This is because the algorithm continuously detects appli-
ance power states and uses them by the estimation and classification stage to
disaggregate the total power load. Accordingly, the results are changing and
also improving from iteration to iteration. In this sense an iteration is every
time the set of appliance power states are updated.

5.4.6 Computational Complexity

The proposed load disaggregation approach should be of low computational
complexity to work on restricted hardware in soft realtime. Soft realtime in
this context means that the algorithm should be able to produce a valid result
inbetween the measurement of two consecutive power samples without providing
strict guaranties on this timing. The classification process is time-critical since

84



5 Unsupervised Approach 5.4 Case Studies
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virtual Device 3

unknown

85.6%
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10.7%
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Figure 5.10: Classification results for the energy shares of REDD houses 1
for the first 6 days
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49.1%
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Figure 5.11: Classification results for the energy shares of REDD houses 1
for the second 6 days

it should work online (sample per sample). The other three processing stages
are performed on an observation window of one or more days and not aiming
to be online-capable.
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Figure 5.12: Classification results for the energy shares of REDD houses 1
for the third 6 days
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Figure 5.13: Classification results for the energy shares of REDD houses 1
for the fourth 6 days

We run simulations on a standard PC and a UDOO Board, which is an
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Day VD 1 VD 2 VD 3 As Unkn ACC

ACC

1 99.1 99.7 99.8 6 1 0.5

2 98.0 99.5 99.4 11 1 0.92

3 98.2 99.5 99.4 9 2 0.7

4 99.4 99.4 99.5 10 2 0.77

total 98.7 99.5 99.6 9 1.5 0.72

Table 5.6: Case study results for As, Unk and ACC for real
world based power measurements (REDD House 1-3) with the
set of detected power states computed on the submetered power
measurements

embedded development platform based on a Freescale ARM processor3. We
measure the time for each classification iteration and evaluate the time according
to reached mean and standard deviation of the computational time. In contrast
to the previous section, the implementation based on MATLAB was translated
and implemented in C++ making the algorithm platform-independent working.
We used synthetically generated power data in which we varied the number
of appliances between N ∈ {6,12,18} with a varying number of particles p ∈
{100,500,1000}. In Figure 5.14, the errorbar of the reached computational
times for different implementations and settings on the load disaggregation
problem are presented. The C++ implementation is in general at least 10 times
faster than the Matlab implementation. Computational times below 10ms can
be reached. The C++ implementation running on an embedded hardware as
the UDOO reaches computational times below 100ms and show is applicability
to run on embedded hardware. Considering a sampling frequency of 1 s we
claim that the approach is fulling the wanted soft-real time capability. The
approach provides a valid classification result for each time instance of the
sampling process. The computational time is increasing linear by the number
of wanted appliances and the number of used particles. We claim that the
approach is scalable to the number of used power states by the number of used
particles for the estimation process.

5.5 Discussion

In the previous section we evaluated the proposed load disaggregation approach
by performing different case studies. The presented algorithm is unsupervised,

3http://www.udoo.org/
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Figure 5.14: Error bar of the computational time of the classification process on
different hardware and different implementations. The number of used particles
(p ∈ {100,500,1000}) and number of appliances (N ∈ {6,12,18}) is varied

needs no device information as the usual power consumption or the structure of
the device. The approach detects on/off appliances. It is able to detect unique
power states in aggregated power draws. According to the fact that detected
power events also include events from multi-state appliances, the presented
approach has to be enhanced to multi-state appliances in future work. The
power state detection phase is working sufficient to detect steady state events,
but suffers on the problem of power events lasting over several seconds before
remaining in steady state. This introduces errors in the detection process which
can be fairly compensated by parameter tuning of the algorithm. Moreover,
the algorithm shows on the one hand that it can work with inaccurate power
measurements and power state models as well as with predefined transition
matrices. The proposed approach is based on HMMs which are known to be
good at modelling the combination of stationary processes with continuous data
over discrete time but are computational expensive. The learning process is
computational complex and not working online. The present load disaggregation
framework solves this constraint by being able to work with predefined transition
matrices without a certain learning stage. Moreover, the algorithm is proofing
to be of low computational complexity based on the case study of Section 5.4.6.
The algorithm is scalable by the number of used particles. The more particles
are used the better is the classification results. In general the PF has also the
advantage to be easily parallelizable.

The approach as presented is highly dependent on the chosen parameters.
By changing the threshold value from 25 to 50W whole NILM result is changing
to some extent. Although the choice of a threshold value is highly dependent on
the used household and their included appliances. Future work should perform
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a parameter evaluation or even introduce an automatic parameter tuning stage
to make the approach applicable also for large deployments.

Moreover, we claim that the presented approach is employable for real world
scenarios. This is shown by the low computation complexity able to work also
on restricted hardware and the improving estimation and classification behavior
over time without any knowledge of the load disaggregation environment. Finally,
it is also worthy to discuss that the algorithm is currently not able to label
detected appliance states to a real appliance. This and the scalability to a
higher appliance number is necessary and the next step to make the algorithm
general deployable for real households.

5.6 Summary

In this chapter an unsupervised approach to solve the problem to disaggregate
appliance power draws from the aggregated power load was presented. The
approach autonomously detects the power states of the used appliances at
run-time. It improves the saved appliance models in operation and updates
the appliance database by adding new appliance models and maintaining saved
appliance models. The detected appliance models can be used by the load
disaggregator to estimate the appliance states. The algorithm contains a
preprocessing stage to de- noise and to smooth the aggregated power draw in a
way to be able to detect sharp and significant power edges. Appliance models
are established as on/off appliances only with the knowledge of detected power
edges and are finally used by the load disaggregator based on particle filtering.
The approach is working unsupervised and online, and can work on restricted
hardware such as embedded computers. In detail, the approach can be split
into the following four parts i) feature detection, ii) state clustering & appliance
creation iii) state estimation and appliance classification and iv) appliance
database update. Each stage has been evaluated on synthetic and/or real-world
measurement data. The results show that the number of detected appliance
states and the corresponding disaggregation result is sufficient. In summary, the
work contributes to current state-of-the-art algorithms by being an unsupervised
active power based (based on one feature) load disaggregation approach working
online without any system information (e.g., number of appliances, power states
of appliances) and being of low computational complexity able to work on
embedded hardware.
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CHAPTER

6
Conclusion, Limitations
and Future Work

”All things are difficult before they are easy.”

– Thomas Fuller

In this chapter, we conclude and summarize the proposed approaches for
NILM. We provide information about limitations of the proposed approaches
and show directions for future work based on the contributions of this work.
Finally, we also present peer-reviewed works related to the topic of the thesis.

6.1 Conclusion

To improve the energy awareness and the energy efficiency in homes, appliance-
level energy feedback could be the holy grail of energy efficiency [Arm13].
Non-intrusive load monitoring, which is a single monitor solutions aims to
provide appliance-level energy feedback. It uses appliance characteristics and
smart algorithms to break down the aggregated power draw to its appliance
components. In this thesis, a comprehensive overview on the research of load
disaggregation has been provided and three novel applications on NILM have
been proposed. In detail, we have started this thesis to present a comprehensive
survey of load monitoring techniques. This included distributed load monitoring
techniques such as intrusive load monitoring. In this sense also load identifica-
tion techniques to detect connected or plugged appliances were discussed. By
identifying the disadvantages of the distributed load monitoring environment,
we have focused the continued thesis on NILM approaches overcoming these
disadvantages. Accordingly, we have concentrated on three different load disag-
gregation applications starting with an optimization-based load disaggregation
approach modelled as a knapsack problem. In this sense, the problem of load
disaggregation has been modelled by a modified knapsack problem. Six different
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metaheuristic optimization approaches have been used as load disaggregator.
The main idea was to create the best composition of appliance power states to
estimate the total power demand of a household for each point in time. The
approaches have been evaluated on real-world data in which the used sets of
appliance power states were different. One power state set consisted of unam-
biguous, not similar power states based on power detections on the aggregated
power draws. In the other case study, we have used submetered power draws to
identify the most common power states. This resulted into power states having
ambiguous appliance power states. The evaluations of the proposed approach
have shown that the approach was able to estimate the total power draw with
acceptable error. But the approach was not able to distinguish between similar
power states. The amount of information based on the used feature set was
insufficient in the context of similar power states. With a unique set of power
states the classification result has shown an improved behavior. We have shown
that more features are needed to possibly overcome the problem of similar and
noisy power states and confirms the statement of Hart [Har92] that the load
disaggregation problem is highly affected by similarities and noise influences.
We have shown by example that the use of a simple optimization approach as a
knapsack model is not able to solve the problem as a whole.

Motivated by the problem of similar classification features and by the fact
that there is no measure to compare different load disaggregation problems, we
have introduced two complexity measures to classify the load disaggregation
problem. Different data sets and evaluation metrics are existing, but there is no
general defined view on the load disaggregation problem itself considering the
used feature set and system assumptions. For example, one could use a sampling
frequency of 1 second and another one 1min. Accordingly, the used feature
set will be different and also the problem complexity. Thus, the introduced
complexity measures are based on the appliance power states as well as on noise
and appliance modelling errors. One complexity measure describes the appliance
set complexity based on the appliance model description. The other complexity
measure considers the appliance usage over time for a certain household power
draw. The introduced complexity measures have been evaluated on three
different real-world datasets and have shown that they are applicable to classify
different load disaggregation problems. By using the proposed complexity
measures it is possible to classify the disaggregation problem, to make load
disaggregation results fairly comparable and to be independent of the used
algorithm and data pre-processing computations.

Finally, in this thesis we have introduced a load disaggregation approach
which is unsupervised, needs no system information, is improving and updating
over time, is working online and is of low computational complexity to run
on embedded hardware. The approach consists of four computational steps i)
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feature detection, ii) state clustering and appliance creation, iii) state estimation
and appliance classification and iv) appliance database update. It has been
evaluated on synthetic and/or real world consumption data. Different test
scenarios such as i) synthetic data evaluation, ii) real-world data evaluation, iii)
transition matrix dependency, iv) appliance model detection, v) overall NILM
framework and vi) the computational complexity have been evaluated. The
results are promising with high classification accuracies (over 90%, dependent
on the problem) and low energy estimation errors. Additionally, we have shown
that requirements such as online capability, no system information and low
computation complexity were met.

In summary, this thesis has introduced and has evaluated three different
perspectives on the load disaggregation problem. Each of these perspectives
and corresponding approaches contribute to the research area of NILM on its
own. We believe that the presented approaches and their introduced system and
model assumptions are valid and applicable for many energy-related applications
and results. However, we also recognized that each of the approaches could
be extended and improved to make it work on more general and large-scale
scenarios. The following two sections are presenting current approach limitations
and accordingly, introducing future research directions based on this thesis.

6.2 Restrictions

Although the presented approach achieved several sufficient and satisfying result,
this chapter aims to discuss restrictions of the presented approaches. We will
describe several scenarios where the present approaches are less successful. The
presented limitations should be used to motivate the future work in the next
section.

The following limitations are valid for both load disaggregation approaches
presented in Chapter 3 and Chapter 5:

• In today’s homes many appliances (e.g. home entertainment appliances)
are controlled over multiple outlets at the same time. Two or more
appliances might be turned off or turned on the exact same time. The
starting time of devices will be the same and the presented approaches of
Chapter 3 and 5 will fail to distinguish between multiple appliances. The
approaches are based on distinguishable power edges which is not possible
for concurrent events.

• Another possible limitation is that home appliances can have power profiles
without general steady states. Model assumptions (e.g., on/off appliances,
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multi-state appliance) as in this work are not applicable by the use of
variable-load consuming appliances. These appliances are changing their
power continuously over time due to their current operation state and
load effort. Also appliances with a highly complex transition behavior
for different operation cycles could lead to problems by increasing to
considered appliance state space.

• It also imaginable that a household owns a multiple number of the same
appliance such as a household having two identical air condition systems
or fridges. The presented approaches will fail to distinguish between two
devices of the same type having the same consuming characteristics.

Additionally, Chapter 4 introducing two new complexity measures for load
disaggregation has limitations. The presented complexity measures are de-
pendent on the used appliances having their predefined feature set. The used
feature set consists out of the model structure of the appliance, the power
demand of all appliance states and the used noise assumptions due to influence
of measurement and modelling errors (for all appliances the same noise assump-
tions are valid). Considering the variety of different appliance dataset and their
different measurement quantities (such as active power, reactive power, current
waveforms, etc.) the presented approaches have to be modified.

6.3 Future Work

The topics presented in this thesis created several future research perspectives
which can be followed in future research:

• The introduced complexity measures for the load disaggregation prob-
lem showed to be beneficial to classify the load disaggregation problem.
The proposed measures are based on active power. Only one feature is
considered which is steady state based. Future work should consider the
extension of the approach by considering multiple features. The features
set should either based on steady state or/and on transient state fea-
tures. This enhancement would make the complexity measure applicable
to classify the load disaggregation problem in general since many load
disaggregation problems are using different feature sets and sampling
frequencies.

• The load disaggregation community is highly dependent on published and
freely available consumption datasets. In recent years, many datasets
have been published which are usable on different applications. Different
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datasets have different houses with a different set of used appliances. Mea-
surements from a particular house could be more complex to disaggregate
than measurements from another house. Accordingly, there is the need
to get a classified load disaggregation problem according to the task you
want to solve. A general test case should be generated as it is done in
other disciplines (e.g. objective function for optimization approaches).
The proposed complexity measure should be used to produce rated load
disaggregation problems which are re-producible, repeatable and divisible.
It is imaginable to generate a total power draw based on a determined com-
plexity value in which appliances power draws are generated synthetically
or retrieved from real-world consumption data.

• Based on the complexity measures and the enhancement with multiple
features, the measure could be used to identify the most relevant appliance
features and their combinations. This will help to introduce and to improve
appliance modelling approaches.

• The proposed unsupervised load disaggregation approach should be im-
proved in the appliance clustering/modelling stages as well as in the
feature detection stage. The feature detection stage should be extended to
extract additional characteristic appliance features based on active power
measurements. Imaginable features are time of use, usage duration and
usage frequency. Due to the extended feature set also the classification
approach should be modified. Moreover, the current approach uses only
on/off appliances. Future work should be able to use multi-state appli-
ances. Repeating behaviors of consecutive power states and power state
combinations are grouped to create multi-state appliances.

• Current tests on the load disaggregation approaches and with the com-
plexity measures were made on relatively small deployments. Future work
should aim to test the approaches on large-scale deployments to detect
algorithmic problems or wrong and mature approach assumption. This
generalizes the introduced approach to work in each considered household.

• The load disaggregation approach should be adopted to work also for
commercial buildings. The load disaggregation approach has to deal with
a different environmental situations in which a commercial building has
in general a high number of appliances. energy is consumed at almost the
same times over the day. Several appliance types are appearing multiple
times increasing the probability of similar appliance power profiles.

• In our opinion the metaheuristic approach can be improved by including
multiple features for the evaluation and using a multi-objective optimiza-
tion approach.
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• Our proposed unsupervised load disaggregation approach delivers device
statuses by neglecting the actual device type. It is not possible to auto-
matically identify appliance 1 as a fridge. Therefore, a labelling approach
has to be introduced. This can be done either by expert knowledge
with the help of user feedback (e.g., notifications by the mobile phone
which appliance was currently turned on) or by an automatic labelling
process. Automatic labelling can be achieved by extracting meta data of
the detected appliances such as the time of use or the usage frequency.

6.4 Related Publications

In total, the author of this thesis published 18 publications in workshops,
conferences and journals. Another two manuscripts are currently under review
for publication. All mentioned publications are related to energy applications.
In the following, we list related peer-reviewed publications we have written and
are not discussed in this thesis. The publications were presented and discussed
with the scientific community. The content of the papers contributed to the
background knowledge of the author related to energy applications and to NILM.
The descriptions of the papers are based on the abstracts of each work.

• Proficiency of Power Values for Load Disaggregation [Pöc15]
Load disaggregation techniques infer the operation of different power
consuming devices from a single measurement point that records the total
power draw over time. Thus, a device consuming power at the moment
can be understood as information encoded in the power draw. However,
similar power draws or similar combinations of power draws limit the
ability to detect the currently active device set. We present an information
coding perspective of load disaggregation to enable a better understanding
of this process and to support its future improvement. In typical cases of
quantity and type of devices and their respective power consumption, not
all possible device configurations can be mapped to distinguishable power
values. We introduce the term of proficiency to describe the suitability of
a device set for load disaggregation. We provide the notion and calculation
of entropy of initial device states, mutual information of power values
and the resulting uncertainty coefficient or proficiency. We show that
the proficiency is highly dependent from the device running probability
especially for devices with multiple states of power consumption. The
application of the concept is demonstrated by artificial data as well as
with actual power consumption data from real-world power draw datasets.

• Worried About Privacy? Let Your PV Converter Cover Your
Electricity Consumption Fingerprints [Rei15]: Solar power has
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emerged as one of the three most widely installed renewable energy sources
around the globe. Photovoltaic (PV) capacity in excess of 150 GW had
been installed in 2013 already, and many more installations are connected
to worldwide power grids every day; especially in the form of small-scale
PV plants in domestic environments. However, in order to connect PV
installations to the power grid, their dc output must be converted to the
nominal mains voltage and frequency through the use of converters. In
this paper, we propose a novel approach to influence the maximum power
point tracking (MPPT) component of such a PV converter in order to
enable two main privacy-preserving operations: Firstly, by deliberately
reducing the output power through changing the converter’s operating
point, appliance operations can be emulated in order to pretend user
presence during periods of absence. Secondly, by running the converter
below optimum output power, and feeding real-time data of an appliance
consumption to the device, it is able to hide the appliance’s operation from
the household’s aggregate consumption. We present simulations results
that prove how our modified converter design can hide appliance load
signatures as well as how it can be used to emulate appliance signatures
to falsely indicate user presence.

• Load hiding of household’s power demand [Ega14b]: With the
development and introduction of smart metering, the energy information
for costumers will change from infrequent manual meter readings to fine-
grained energy consumption data. On the one hand these fine-grained
measurements will lead to an improvement in costumers’ energy habits,
but on the other hand the fined-grained data produces information about
a household and also households’ inhabitants, which are the basis for
many future privacy issues. To ensure household privacy and smart meter
information owned by the household inhabitants, load hiding techniques
were introduced to obfuscate the load demand visible at the household
energy meter. In this work, a state-of-the-art battery-based load hiding
(BLH) technique, which uses a controllable battery to disguise the power
consumption and a novel load hiding technique called load-based load
hiding (LLH) are presented. An LLH system uses a controllable household
appliance to obfuscate the household’s power demand. We evaluate and
compare both load hiding techniques on real household data and show
that both techniques can strengthen household privacy but only LLH can
increase appliance level privacy.

• GREEND: An energy consumption dataset of households in
Italy and Austria [Mon14a]: Home energy management systems can
be used to monitor and optimize consumption and local production from
renewable energy. To assess solutions before their deployment, researchers
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and designers of those systems demand for energy consumption datasets.
In this paper, we present the GREEND dataset, containing detailed power
usage information obtained through a measurement campaign in house-
holds in Austria and Italy. We provide a description of consumption
scenarios and discuss design choices for the sensing infrastructure. Fi-
nally, we benchmark the dataset with state-of-the-art techniques in load
disaggregation, occupancy detection and appliance usage mining.

• European end-users level of energy consumption and current
structural barriers for smart homes: A case study of residen-
tial sectors in Austria and Italy [Kha14]: This article presents a
quantitative assessment of the level of energy consumption of inhabitants
located in Carinthia and Friuli-Venezia Giulia. In addition, an analysis
for the current structural barriers for smart powered homes and smart
energy management systems is conducted. A questionnaire consisting of
43 questions is used to address the aforementioned issues. In particular,
a sample size of 385 respondents with a confidence of 95% and marginal
error of 5% is found to be representative of the adopted area. Based on
the results, we modeled the average energy consumption of a typical 110
m2 area household with 16.8 kWh/day, a 2.6 kW peak, and a load factor
of 27%. Furthermore, an average of 46% of the respondents expressed the
willingness to exploit tariff systems for operating their electrical appliances,
and about two thirds of the respondents declared that they care about
the energy efficiency at their households. However, low renewable energy
utilization is observed due to some existing structural barriers. Therefore,
an analysis and a discussion are carried out to investigate these barriers.
Finally, some recommendations are provided according to the obtained
results.

• YOMO - The Arduino based smart metering board
[Kle15a],[Kle15b]: Smart meters are an enabling technology for many
smart grid applications. This paper introduces a design for a low-cost
smart meter system as well as the fundamentals of smart metering. The
smart meter platform, provided as open hardware, is designed with a
connector interface compatible to the Arduino platform, thus opening the
possibilities for smart meters with flexible hardware and computation fea-
tures, starting from low-cost 8 bit micro controllers up to powerful single
board computers that can run Linux. The metering platform features a
current transformer which allows a non-intrusive installation of the current
measurement unit. The suggested design can switch loads, offers a variable
sampling frequency, and provides measurement data such as active power,
reactive and apparent power. Results indicate that measurement accuracy
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and resolution of the proposed metering platform are sufficient for a range
of different applications and loads from a few Watts up to five kilowatts.

• Techno-economical assessment of grid-connected photovoltaic
power systems productivity in summer season in Klagenfurt,
Austria [Sch14]: This paper shows the productivity of grid-connected
photovoltaic systems, to plan future investments in the region around
Klagenfurt, Austria. To evaluate the usage of grid-connected PV systems,
a methodology based on mainly three factors is presented. These factors
are yield factor, capacity factor and cost of energy. The analysis is done
by a model based on monitored PV data and meteorological data in an
interval of 15 minutes. Meteorological data was recorded from May 2013
until July 2014 with a lack of data from September 2013 until January
2014. By analyzing the collected data, it is found that the daily average
solar energy in Klagenfurt was 6613 Wh/m2 in the time of research. The
results of the research show that future investments in grid-connected
PV systems in Klagenfurt can be profitable. The yield factor over the
time of research (293 days) is 1263.4 kWh/kWp, whereas the capacity
factor of the proposed system is 17.97%. The cost of energy is found to be
0.2348 /kWh. This is a satisfactory result compared with values of other
European counties.

• Integrating households into the smart grid [Mon13]: The success
of the Smart Grid depends on its ability to collect data from heteroge-
neous sources such as smart meters and smart appliances, as well as the
utilization of this information to forecast energy demand and to provide
value-added services to users. In our analysis, we discuss requirements for
collecting and integrating household data within smart grid applications.
We put forward a potential system architecture and report stateof-the-art
technologies that can be deployed towards this vision.

• Design guidelines for smart appliances [Elm12]: Embedded intel-
ligence can help controlling and reducing the energy consumption of
appliances to a significant amount. Such a smart appliance will consist
of a communication interface, a local processing and decision unit and
the appliance’s actual function. Sophisticated functions for such a device
will involve a notion of real-time with a respective time format, a generic
database that contains energy usage logs, error messages, warnings and
real-time measurements for power usage, and an embedded self-description
that allows to integrate the device into a system with minimum manual
configuration. While there exists concepts for smart plugs and smart
outlets that can be applied to ”smarten” an existing device, in general
we need to assume that the variety of appliances and technologies will
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require the support for various architectures including software solutions
that integrate into the functions of an appliance with existing computing
power, e.g. a DVD player or a state-of-the-art television set. Thus there
is a need for architectural services with flexibility for different hosting
systems while keeping the interoperability with respect to a smart home
control system.

• Integration of legacy appliances into home energy management
systems [Ega15c]: The progressive installation of renewable energy
sources requires the coordination of energy consuming devices. At con-
sumer level, this coordination can be done by a home energy management
system (HEMS). Interoperability issues need to be solved among smart
appliances as well as between smart and non-smart, i.e., legacy devices.
We expect current standardization efforts to soon provide technologies to
design smart appliances in order to cope with the current interoperability
issues. Nevertheless, common electrical devices affect energy consump-
tion significantly and deserve consideration within energy management
applications. This paper discusses the integration of smart and legacy
devices into a generic system architecture and, subsequently, elaborates
the requirements and components which are necessary to realize such an
architecture including an application of load detection for the identifica-
tion of running loads and their integration into existing HEM systems.
We assess the feasibility of such an approach with a case study based on a
measurement campaign on real households. We show how the information
of detected appliances can be extracted in order to create device profiles
allowing for their integration and management within a HEMS.

• An Open Solution to Provide Personalised Feedback for Build-
ing Energy Management [Mon15]: The integration of renewable
energy sources in- creases the complexity in mantaining the power grid.
In particular, the highly dynamic nature of generation and consumption
demands for a better utilization of energy resources, which seen the cost
of storage infrastructure, can only be achieved through demand-response.
Accordingly, the avail- ability of energy and potential overload situations
can be reflected using a price signal. The effectiveness of this mecha-
nism arises from the flexibility of device operation, which is nevertheless
heavily reliant on the exchange of information between the grid and its
consumers. In this paper, we investigate the capability of an interactive
energy management system to timely inform users on energy usage, in
order to promote an optimal use of local resources. In particular, we
analyse data being collected in several households in Italy and Austria to
gain insights into usage behavior and drive the design of more effective
systems. The outcome is the formulation of energy efficiency policies for
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residential build- ings, as well as the design of an energy management
system, consisting of hardware measurement units and a management
software. The Mjölnir framework, which we release for open use, provides
a platform where various feedback concepts can be implemented and
assessed. This includes widgets displaying disaggregated and aggregated
consumption information, as well as daily production and tailored advices.

• Smart Grid: Visionen & Herausforderungen [Ega14a]: Book chap-
ter introducing the term Smart Grid and its current and future visions
and challenges
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